
Why you shouldn’t
care about
Apache Iceberg

Ryan Blue
Data Council Austin, January 2022

What is Iceberg?

Iceberg is an open standard
for tables with SQL behavior

Iceberg’s
insight

Iceberg should be invisible

● Avoid unpleasant surprises
○ Principle of least surprise

● Donʼt steal attention
○ Reduce context switching

Simplest form: Reliable updates

● Stop manual cleanup
○ All changes are successful
○ OR nothing changed at all

● Enable targeted updates
○ Rewrite only whatʼs needed

(You know, the boring stuff)

Today’s use case:
PoochFitness

Congratulations!

● Youʼre the newest employee
at PoochFitness
○ PoochFitness sells the

premium fitness tracker for
manʼs best friend

● Events are already flowing
○ 12 months of data available

● Everyone is eager for
insights!

CREATE TABLE pooch_logs (
 event_serial bigint,
 event_ts timestamptz,
 device_id string,
 steps int,
 possible_shake boolean)

Problem #1: Bad data

A PII bug!

● You find email addresses in
the device_id column
○ Field order changed in

PoochFitness Rev1.3
○ No one uses device_id
○ Event parsing is fixed

● Option #1: Babysitting
○ Rewrite a year of events

● Option #2: Drop & Add

 ALTER TABLE pooch_logs
 DROP COLUMN device_id
 ALTER TABLE pooch_logs
 ADD COLUMN device_id string

Drop and Add

 ALTER TABLE pooch_logs DROP COLUMN device_id;
 ALTER TABLE pooch_logs ADD COLUMN device_id string;

 SELECT count(🧟) FROM pooch_logs WHERE device_id LIKE '%@%';
 => 4198274192872

 Spark does better!

 UnsupportedOperationException: Unrecognized column change class
org.apache.spark.sql.connector.catalog.TableChange$DeleteColumn.
You may be running an out of date ^H^H^H version.

Schema evolution

● Instantaneous – no rewrites
● Safe – no undead columns 🧟
● Saves days of headache

ALTER TABLE db.tab
RENAME COLUMN
 id TO customer_id

Problem #2: Slow queries

Queries are slow

● Analysts need your help
○ The table used to be fine
○ Queries were slower over time
○ Everyone eventually gave up

● Cause #1: No partition filters
○ Analysts just need to be

trained to filter data twice!

● Cause #2: No partitioning
○ Letʼs hope not...

Hidden partitioning

● No silent correctness bugs
● No conversion mistakes
● Query without being an

expert or DBA

Problem #3: No partitions

What if there was no partitioning?

● No partitioning
○ No one knew this was a thing
○ Everyoneʼs too busy working

on PoochFitness Rev1.5 to
worry about this!

● Migrate to a new table?
○ Rewrite all the queries
○ Rewrite all the data

Layout evolution

● Lazy – only rewrite if needed
● Partitioning mistakes are

okay
● Changes with your data
● Saves a month of headache

ALTER TABLE pooch_logs
ADD PARTITION FIELD
 days(event_ts) as ts_date

Iceberg should be invisible

● Avoid unpleasant surprises
○ No zombie columns
○ Performance should not be

mysterious

● Donʼt steal attention
○ No rewriting to drop a column
○ Donʼt make people filter twice
○ Fix problems without migration

Sounds like I should care
about Iceberg?

Care about capabilities,
not formats

The data landscape is changing

● Central table storage
○ Independent from compute
○ Think about data gravity

● Access control
○ Consistent authorization policy
○ Enforced across engines

● Portable compute
○ Multi-engine is the new normal
○ Portable logic and code

● Stop losing structure
○ Most “unstructured” data didnʼt

start that way
○ Share, donʼt copy

Object storage

This multi-engine platform is the next challenge

Data & metadata

Compute

Apache
Spark

Catalog

???

Iceberg is the foundation

● Open standard for huge tables

● SQL abstraction and behavior

● Data warehouse fundamentals

● Data services
○ Donʼt make humans babysit

● Declarative data engineering
○ Vastly different engines require

better ways to work

Thank you!

Iceberg is much more …

● Expressive SQL commands
○ MERGE INTO
○ UPDATE … WHERE
○ Lazy and eager rewrites

(copy-on-write,
merge-on-read)

● Declarative data engineering
ALTER TABLE ...
WRITE ORDERED BY event_ts

● Time travel
● Indexed data and metadata
● Branching and tagging for CI/CD

Apache Flink Adoption at Shopify
Yaroslav Tkachenko

👋 Hi, I’m Yaroslav

Staff Data Engineer @ Shopify (Data Platform: Stream Processing)

Software Architect @ Activision (Data Platform)

Engineering Lead @ Mobify (Platform)

Software Engineer → Director of Engineering @ Bench Accounting
(Web Apps, Platform)

sap1ens sap1ens.com

1.7 Million+
NUMBER OF MERCHANTS

Shopify creates the best commerce tools for
anyone, anywhere, to start and grow a business.

~175 Countries
WITH MERCHANTS

~$356 Billion
TOTAL SALES ON SHOPIFY

7,000+
NUMBER OF EMPLOYEES

What I’m NOT going to cover today

Instead, we want to make building
and operating Flink applications as

easy as building and operating
Rails applications

33

We Need Realtime Data Products

● Reporting & Insights
● Product Analytics
● Data Integration
● Data Enrichment
● Sessionization
● …

Everywhere

● Sales & Orders
● Inventory
● Marketing
● Billing
● Customer Behaviour
● Messaging
● Mobile
● 3rd-party APIs
● …

Why Apache Flink?

● We’ve been building streaming applications for many years: Spark Structured
Streaming, Beam, in-house tools.

● None of the ways supports large complex stateful transformations.
● None of the ways feels like “just building another app”.

How do you build a data platform?

1. Ecosystem 3. “Serverless” Platform2. Managed Platform

Three Levels of Platforms

1. Ecosystem

Combination of libraries,
tools and standalone
services.

3. “Serverless” Platform2. Managed Platform

Examples: Apache Spark/Flink
+ related tooling.

Three Levels of Platforms

1. Ecosystem

Combination of libraries,
tools and standalone
services.

3. “Serverless” Platform2. Managed Platform

A single shared managed
runtime powering many
use-cases.

Examples: Apache Spark/Flink
+ related tooling.

Three Levels of Platforms

Examples: Google Dataproc,
Amazon EMR.

1. Ecosystem

Combination of libraries,
tools and standalone
services.

3. “Serverless” Platform

A single shared “serverless”
runtime powering many
use-cases.

2. Managed Platform

A single shared managed
runtime powering many
use-cases.

Examples: Apache Spark/Flink
+ related tooling.

Three Levels of Platforms

Examples: Google Dataproc,
Amazon EMR.

Examples: Google BigQuery,
Amazon Redshift Serverless.

Our strategy: start with an
ecosystem of tools, evolve to a

“serverless” platform

Roadmap

● First milestone, foundations:
○ Library: common Flink components, helpers and connectors:

■ Kafka (multiple flavours), GCS (many formats), Bigtable.
○ Observability: DataDog metrics reporter, structured logging for Splunk.
○ Examples: real applications demonstrating common use-cases.
○ Project generator: have a working repo in 30 seconds.
○ Documentation & customer support.

● Second milestone: launch, learn and iterate.

Ecosystem: Trickle

Ecosystem: Trickle

https://docs.google.com/file/d/1e4AW3M3BNinCEB6lnvijYtDFjPb527C3/preview

implicit val env = Trickle.createEnv()

Typical Flink application

implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] =
CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
 topic = "core-line_items-v2", // ...
)

Typical Flink application

implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] =
CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
 topic = "core-line_items-v2", // ...
)

val sink: SinkFunction[Result] = pipelineConfig.sinkType match {
 case Print => new PrintSinkFunction()
 case Bigtable => BigtableSink[Result](
 table = "vendor_popularity", // ...
)
}

Typical Flink application

implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] = CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
 topic = "core-line_items-v2", // ...
)

val sink: SinkFunction[Result] = pipelineConfig.sinkType match {
 case Print => new PrintSinkFunction()
 case Bigtable => BigtableSink[Result](
 table = "vendor_popularity", // ...
)
}

val checkouts = processCheckoutTrackSource(checkoutTrackSource)
val lineItems = processLineItemsSource(lineItemsSource)
val results = aggregateJoinResults(
 joinCheckoutsAndLineItems(checkouts, lineItems)
)

results.addSink(sink)

env.execute("Demo App")

Typical Flink application

implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] = CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
 topic = "core-line_items-v2", // ...
)

val sink: SinkFunction[Result] = pipelineConfig.sinkType match {
 case Print => new PrintSinkFunction()
 case Bigtable => BigtableSink[Result](
 table = "vendor_popularity", // ...
)
}

val checkouts = processCheckoutTrackSource(checkoutTrackSource)
val lineItems = processLineItemsSource(lineItemsSource)
val results = aggregateJoinResults(
 joinCheckoutsAndLineItems(checkouts, lineItems)
)

results.addSink(sink)

env.execute("Demo App")

Typical Flink application

Trickle V2 documentation

Lessons Learned

Apache Flink Fork

● We had to fork Flink in order to incorporate early features and add bugfixes:
○ E.g. running Flink in GCP might be tricky; Parquet reader < 1.14 has tons of

issues.
○ Some things just don’t work properly (there are no good DogStatsD metrics

reporters out there).
● Maintaining the fork doesn’t need to be hard!

Fork Upstream

Tag: release-1.14.3

Branch:
shopify-release-1.14.3

Shopify
changes

Branch: masterBranch: master

Our Flink fork branching strategy

shopify-flink

Branch:
shopify-release-1.14.3

Shopify
changes

Artifact
Repository

(JARs)

GCS
(Binary

distribution)

CI Job:
shopify-flink-publish-package

data-docker-images Docker
Registry

Our Flink fork build process

Data Reconciliation

● Consider investing in data reconciliation tooling when migrating workloads.
○ E.g. we have a data integrity service that continuously performs data

integrity checks and alerts if necessary.
● Could be as simple as running old and new workloads in parallel and comparing

results in some kind of notebook. You may need to make certain design
decisions to support it.

● This can actually uncover bugs!

Scaling Adoption

● Multiple teams involved: Streaming Capabilities, Customer Success (DPE).
● The first team manages the core components, the second team helps

customers:
○ Triage questions & requests, only escalate what’s necessary.
○ Help with onboarding.
○ Act as consultants, be involved in technical designs and discussions.
○ White-glove first key customers.

Building Community

● Engage first adopters to build community!
○ Internal Q&A website.
○ #flink and other Slack channels.
○ Regular Flink User Group meetings.

In less than 6 months we had 3
use-cases in production and 10+

prototypes

Next Steps

● Production Maturity
○ Better Kubernetes tooling & integrations.
○ Zero-downtime deployments.
○ Autoscaling.

● New Features
○ 1.14 upgrade, Hybrid sources.
○ Python support.
○ Iceberg integration.
○ and more!

Final goal: serverless runtime.

Summary

● Carefully choose the right approach to build a platform.
● Build the foundation and engage customers early.
● Having more control over the key technology (e.g. forking it) may be necessary.
● Create a community, don’t afraid to white-glove first key customers.
● Keep iterating, focus on the biggest gaps.

Questions?
Twitter: @sap1ens

Also, we’re hiring! shopify.com/careers

How 200+ Leaders Made
Business Data Work Harder

Jesika Haria, LogicLoop

What you’ll get out of this talk

5-10 years in industry

Build reports and pipelines for
business users

Want to do more high-leverage work

How to get more operational use out of your data

You = Dani, the Data Engineer

We’ll cover

● 200+ leaders’ operations data needs
● A system for business alerting & automation
● How to get the most out of it
● References & success stories

Make data work harder than people!

Know Thy Speaker
Jesika Haria

CEO, LogicLoop
@jesikaharia

Founding Team #5
Built 1st remote eng team, customer success
for top 10 banks, founded Product org

Sr Software Engineer
Built 1st cloud product used by 100,000+
analysts as Google Cloud Dataprep

EECS | Advanced Researcher
1 of 3 from all over India selected

Graph Search Engineer
Ranking algorithms for Groups

Founder and CEO
Operations automation for high-growth
companies to move faster without engineers

200+ leaders share their
operations data needs

Operational data is an under-utilized lever in
business growth

200+ leaders use operational data across verticals

Compliance & Fraud

“...flag risky transactions”

“...adjust demand and supply live”

Trust & Safety

“...remove spam and abuse”

Logistics

“...allocate COVID vaccine tiers to patients”

Healthcare

Business Operations

“...remediate fulfillment issues”

“...automate account summary emails”

Customer & Growth

“We ingest operational data…”

RealityExpectation

“...to trigger actions”

Fast-growing companies are bottlenecked

Growth = new business apps & workflows
Creates demand for new data pipelines

Only ~20% requests get fulfilled by data engineers

Dani, the Data Eng
Ollie, the Ops

Can you update this
fraud policy

urgently?
Errr.. next sprint?

● Frustrated by slowness
● Cannot experiment
● No visibility or governance

● Overwhelmed fighting fires
● High-leverage work suffers

Self-serve is the key

🔑 Operations data maturity checklist

“read”

☐ Clean operational
data exists

☐ Business knows
where to find it

☐ Business can
self-serve insights

“write”

☐ Business can
proactively identify
issues

☐ Business can debug
and rectify exceptions

“leverage”

☐ Business can
automate handling
exceptions

☐ Business can
improve operational
processes over time

Introducing a system for business
alerting and automation

Motivating use cases

An ideal business user experience

What a solution could look like

What a solution could look like

🔑 Common pattern amongst best internal tools

Select data Trigger
actions

Write business
rules

A system for business users to detect and act quickly

Business users need to combine
real-time with warehouse data

Business users need to route data to
Slack alerts, emails, customer
communications etc.

Business users need to set and
change thresholds

How to get the most out of a business
alerting and automation system

#1 Route operations data correctly

Example: fraud data operations

#2 Deep dive: alerting best practices

Content

❏ Which system created

the alert
❏ Description
❏ Severity of deviance
❏ Link to resolve / debug
❏ Owner
❏ SLA for resolution

Tip: Use emojis to help skim!

Management

❏ Audit and action logs
❏ Debugging dashboards

Tip: Snooze or set
reminder schedules

Alerts should be real, urgent and actionable

Creation

❏ Don’t re-alert for the
same issue

❏ Calibrate as early and
often as possible

❏ Aim for <5 / week

Tip: Over-monitoring is
harder to solve than
under-monitoring

Example: a fraud alert

System of origin

Clear owner Skimmable

Link to details

Urgency level

Relevant info

Call to action

Deviance

#3 Iterate, iterate, iterate

Monitoring as code

❏ Version control changes
❏ Backtest
❏ Permissioning
❏ Approval process

Management

❏ Ensure commensurate
staffing

❏ Groom backlogs every
month

❏ Track time to resolve
and automate biggest
time sinks

❏ Consolidate
decisioning systems

Improve signal

❏ Weed out alerts >x%
false positive rate

❏ Consolidate alerts that
have >x% overlap

❏ Distinguish between
data and system failure

Example: Improving fraud alerting system

Step 1
Add a Slack notification & adjust thresholds

Step 2
Create review tickets

Step 3
Auto reject

🔑 How to get the most out of a business alerting
and automation system

Route data correctly
Decision Tree + Example

Deep dive: alerting best practices
Checklist + Example

Iterate, iterate, iterate
Checklist + Ladder

References &
Success Stories

Case study: Oscar Health

Reference https://medium.com/oscar-tech/an-equal-partnership-between-tech-and-business-69b8c16a499b, 03/20/2022

Built Automat, a self-service configuration platform

https://medium.com/oscar-tech/an-equal-partnership-between-tech-and-business-69b8c16a499b

Case study: Uber

Reference https://eng.uber.com/mastermind/ , 03/20/2022

Built Mastermind, a real-time fraud rules engine

https://eng.uber.com/mastermind/

And results you won’t find blogs about

Summary

🔑 What we talked about

❏ 200+ leaders’ operations data needs
❏ Self-serve maturity checklist

❏ A system for business alerting & automation
❏ Reference architecture for Data → Triggers → Action

❏ How to get the most out of it
❏ Examples and best practices on how to route data, alert and iterate

❏ References & success stories
❏ Architectures and case studies

I think about this a lot because we’re
building it – let’s talk!
@jesikaharia
jesika@logicloop.com

MARCH 23 - 24, 2022

NFT Drop

Closing Keynote

DevOps for ML and
Other Half-Truths

Diego Oppenheimer, EVP, DataRobot

MARCH 23 - 24, 2022

When Speaker
Slides?

Thank you

