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What is Iceberg?



Iceberg is an open standard 
for tables with SQL behavior



Iceberg’s
insight



Iceberg should be invisible

● Avoid unpleasant surprises
○ Principle of least surprise

● Donʼt steal attention
○ Reduce context switching



Simplest form: Reliable updates

● Stop manual cleanup
○ All changes are successful
○ OR nothing changed at all

● Enable targeted updates
○ Rewrite only whatʼs needed

(You know, the boring stuff)



Today’s use case: 
PoochFitness



Congratulations!

● Youʼre the newest employee 
at PoochFitness
○ PoochFitness sells the 

premium fitness tracker for 
manʼs best friend

● Events are already flowing
○ 12 months of data available

● Everyone is eager for 
insights!

CREATE TABLE pooch_logs (
    event_serial bigint,
    event_ts timestamptz,
    device_id string,
    steps int,
    possible_shake boolean)



Problem #1: Bad data



A PII bug!

● You find email addresses in 
the device_id column
○ Field order changed in 

PoochFitness Rev1.3
○ No one uses device_id
○ Event parsing is fixed

● Option #1: Babysitting
○ Rewrite a year of events

● Option #2: Drop & Add

  ALTER TABLE pooch_logs
    DROP COLUMN device_id
  ALTER TABLE pooch_logs
    ADD COLUMN device_id string



Drop and Add

  ALTER TABLE pooch_logs DROP COLUMN device_id;
  ALTER TABLE pooch_logs ADD COLUMN device_id string;

  SELECT count(🧟) FROM pooch_logs WHERE device_id LIKE '%@%';
  => 4198274192872

  Spark does better!

  UnsupportedOperationException: Unrecognized column change class 
org.apache.spark.sql.connector.catalog.TableChange$DeleteColumn. 
You may be running an out of date ^H^H^H version.



Schema evolution

● Instantaneous – no rewrites
● Safe – no undead columns 🧟
● Saves days of headache

ALTER TABLE db.tab
RENAME COLUMN
  id TO customer_id



Problem #2: Slow queries



Queries are slow

● Analysts need your help
○ The table used to be fine
○ Queries were slower over time
○ Everyone eventually gave up

● Cause #1: No partition filters
○ Analysts just need to be 

trained to filter data twice!

● Cause #2: No partitioning
○ Letʼs hope not...



Hidden partitioning

● No silent correctness bugs
● No conversion mistakes
● Query without being an 

expert or DBA



Problem #3: No partitions



What if there was no partitioning?

● No partitioning
○ No one knew this was a thing
○ Everyoneʼs too busy working 

on PoochFitness Rev1.5 to 
worry about this!

● Migrate to a new table?
○ Rewrite all the queries
○ Rewrite all the data



Layout evolution

● Lazy – only rewrite if needed
● Partitioning mistakes are 

okay
● Changes with your data
● Saves a month of headache

ALTER TABLE pooch_logs
ADD PARTITION FIELD
  days(event_ts) as ts_date



Iceberg should be invisible

● Avoid unpleasant surprises
○ No zombie columns
○ Performance should not be 

mysterious

● Donʼt steal attention
○ No rewriting to drop a column
○ Donʼt make people filter twice
○ Fix problems without migration



Sounds like I should care 
about Iceberg?



Care about capabilities,
not formats



The data landscape is changing

● Central table storage
○ Independent from compute
○ Think about data gravity

● Access control
○ Consistent authorization policy
○ Enforced across engines

● Portable compute
○ Multi-engine is the new normal
○ Portable logic and code

● Stop losing structure
○ Most “unstructured” data didnʼt 

start that way
○ Share, donʼt copy



Object storage

This multi-engine platform is the next challenge

Data & metadata

Compute

Apache
Spark

Catalog

???



Iceberg is the foundation

● Open standard for huge tables

● SQL abstraction and behavior

● Data warehouse fundamentals

● Data services
○ Donʼt make humans babysit

● Declarative data engineering
○ Vastly different engines require 

better ways to work



Thank you!



Iceberg is much more …

● Expressive SQL commands
○ MERGE INTO
○ UPDATE … WHERE
○ Lazy and eager rewrites

(copy-on-write, 
merge-on-read)

● Declarative data engineering
ALTER TABLE ...
WRITE ORDERED BY event_ts

● Time travel
● Indexed data and metadata
● Branching and tagging for CI/CD



Apache Flink Adoption at Shopify
Yaroslav Tkachenko



👋 Hi, I’m Yaroslav                                        

Staff Data Engineer @ Shopify (Data Platform: Stream Processing)

Software Architect @ Activision (Data Platform)

Engineering Lead @ Mobify (Platform)

Software Engineer → Director of Engineering @ Bench Accounting 
(Web Apps, Platform)

sap1ens   sap1ens.com



1.7 Million+
NUMBER OF MERCHANTS

Shopify creates the best commerce tools for 
anyone, anywhere, to start and grow a business.

~175 Countries
WITH MERCHANTS

~$356 Billion
TOTAL SALES ON SHOPIFY

7,000+
NUMBER OF EMPLOYEES



What I’m NOT going to cover today 





Instead, we want to make building 
and operating Flink applications as 

easy as building and operating 
Rails applications 
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We Need Realtime Data Products

● Reporting & Insights
● Product Analytics
● Data Integration
● Data Enrichment
● Sessionization
● …

Everywhere

● Sales & Orders
● Inventory
● Marketing
● Billing
● Customer Behaviour
● Messaging
● Mobile
● 3rd-party APIs
● …



Why Apache Flink?

● We’ve been building streaming applications for many years: Spark Structured 
Streaming, Beam, in-house tools.

● None of the ways supports large complex stateful transformations.
● None of the ways feels like “just building another app”.



How do you build a data platform?



1. Ecosystem 3. “Serverless” Platform2. Managed Platform

Three Levels of Platforms



1. Ecosystem

Combination of libraries, 
tools and standalone 
services.

3. “Serverless” Platform2. Managed Platform

Examples: Apache Spark/Flink 
+ related tooling.

Three Levels of Platforms



1. Ecosystem

Combination of libraries, 
tools and standalone 
services.

3. “Serverless” Platform2. Managed Platform

A single shared managed 
runtime powering many 
use-cases.

Examples: Apache Spark/Flink 
+ related tooling.

Three Levels of Platforms

Examples: Google Dataproc, 
Amazon EMR.



1. Ecosystem

Combination of libraries, 
tools and standalone 
services.

3. “Serverless” Platform

A single shared “serverless” 
runtime powering many 
use-cases.

2. Managed Platform

A single shared managed 
runtime powering many 
use-cases.

Examples: Apache Spark/Flink 
+ related tooling.

Three Levels of Platforms

Examples: Google Dataproc, 
Amazon EMR.

Examples: Google BigQuery, 
Amazon Redshift Serverless.



Our strategy: start with an 
ecosystem of tools, evolve to a 

“serverless” platform



Roadmap

● First milestone, foundations:
○ Library: common Flink components, helpers and connectors:

■ Kafka (multiple flavours), GCS (many formats), Bigtable.
○ Observability: DataDog metrics reporter, structured logging for Splunk.
○ Examples: real applications demonstrating common use-cases.
○ Project generator: have a working repo in 30 seconds.
○ Documentation & customer support.

● Second milestone: launch, learn and iterate.



Ecosystem: Trickle



Ecosystem: Trickle



https://docs.google.com/file/d/1e4AW3M3BNinCEB6lnvijYtDFjPb527C3/preview


implicit val env = Trickle.createEnv()

Typical Flink application



implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] = 
CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
  topic = "core-line_items-v2", // ...
)

Typical Flink application



implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] = 
CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
  topic = "core-line_items-v2", // ...
)

val sink: SinkFunction[Result] = pipelineConfig.sinkType match {
  case Print => new PrintSinkFunction()
  case Bigtable => BigtableSink[Result](
    table = "vendor_popularity", // ...
  )
}

Typical Flink application



implicit val env = Trickle.createEnv()

val checkoutTrackSource: DataStream[CheckoutTrack] = CheckoutTrackMonorailSource()

val lineItemsSource: DataStream[LineItemRecord] = CDCSource[LineItemRecord](
  topic = "core-line_items-v2", // ...
)

val sink: SinkFunction[Result] = pipelineConfig.sinkType match {
  case Print => new PrintSinkFunction()
  case Bigtable => BigtableSink[Result](
    table = "vendor_popularity", // ...
  )
}

val checkouts = processCheckoutTrackSource(checkoutTrackSource)
val lineItems = processLineItemsSource(lineItemsSource)
val results = aggregateJoinResults(
  joinCheckoutsAndLineItems(checkouts, lineItems)
)

results.addSink(sink)

env.execute("Demo App")

Typical Flink application
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Trickle V2 documentation



Lessons Learned



Apache Flink Fork

● We had to fork Flink in order to incorporate early features and add bugfixes:
○ E.g. running Flink in GCP might be tricky; Parquet reader < 1.14 has tons of 

issues.
○ Some things just don’t work properly (there are no good DogStatsD metrics 

reporters out there).
● Maintaining the fork doesn’t need to be hard!



Fork Upstream

Tag: release-1.14.3

Branch: 
shopify-release-1.14.3

Shopify 
changes

Branch: masterBranch: master

Our Flink fork branching strategy



shopify-flink

Branch: 
shopify-release-1.14.3

Shopify 
changes

Artifact 
Repository

(JARs)

GCS
(Binary 

distribution)

CI Job: 
shopify-flink-publish-package

data-docker-images Docker 
Registry

Our Flink fork build process



Data Reconciliation

● Consider investing in data reconciliation tooling when migrating workloads.
○ E.g. we have a data integrity service that continuously performs data 

integrity checks and alerts if necessary.
● Could be as simple as running old and new workloads in parallel and comparing 

results in some kind of notebook. You may need to make certain design 
decisions to support it.

● This can actually uncover bugs!



Scaling Adoption

● Multiple teams involved: Streaming Capabilities, Customer Success (DPE).
● The first team manages the core components, the second team helps 

customers:
○ Triage questions & requests, only escalate what’s necessary.
○ Help with onboarding.
○ Act as consultants, be involved in technical designs and discussions.
○ White-glove first key customers.



Building Community

● Engage first adopters to build community!
○ Internal Q&A website.
○ #flink and other Slack channels.
○ Regular Flink User Group meetings.



In less than 6 months we had 3 
use-cases in production and 10+ 

prototypes





Next Steps

● Production Maturity 
○ Better Kubernetes tooling & integrations.
○ Zero-downtime deployments.
○ Autoscaling.

● New Features
○ 1.14 upgrade, Hybrid sources.
○ Python support.
○ Iceberg integration.
○ and more!

Final goal: serverless runtime.



Summary

● Carefully choose the right approach to build a platform.
● Build the foundation and engage customers early.
● Having more control over the key technology (e.g. forking it) may be necessary.
● Create a community, don’t afraid to white-glove first key customers.
● Keep iterating, focus on the biggest gaps.



Questions?
Twitter: @sap1ens

Also, we’re hiring! shopify.com/careers



How 200+ Leaders Made 
Business Data Work Harder

Jesika Haria, LogicLoop



What you’ll get out of this talk

5-10 years in industry

Build reports and pipelines for 
business users

Want to do more high-leverage work

How to get more operational use out of your data

You = Dani, the Data Engineer

We’ll cover

● 200+ leaders’ operations data needs
● A system for business alerting & automation
● How to get the most out of it
● References & success stories

Make data work harder than people!



Know Thy Speaker
Jesika Haria

CEO, LogicLoop
@jesikaharia

Founding Team #5
Built 1st remote eng team, customer success 
for top 10 banks, founded Product org

Sr Software Engineer
Built 1st cloud product used by 100,000+ 
analysts as Google Cloud Dataprep

EECS | Advanced Researcher
1 of 3 from all over India selected

Graph Search Engineer
Ranking algorithms for Groups

Founder and CEO
Operations automation for high-growth  
companies to move faster without engineers



200+ leaders share their
operations data needs



Operational data is an under-utilized lever in 
business growth



200+ leaders use operational data across verticals

Compliance & Fraud

“...flag risky transactions”

“...adjust demand and supply live”

Trust & Safety

“...remove spam and abuse”

Logistics

“...allocate COVID vaccine tiers to patients”

Healthcare

Business Operations

“...remediate fulfillment issues”

“...automate account summary emails”

Customer & Growth



“We ingest operational data…”

RealityExpectation



“...to trigger actions”



Fast-growing companies are bottlenecked

Growth = new business apps & workflows
Creates demand for new data pipelines

Only ~20% requests get fulfilled by data engineers

Dani, the Data Eng
Ollie, the Ops

Can you update this 
fraud policy 

urgently?
Errr.. next sprint? 

● Frustrated by slowness
● Cannot experiment
● No visibility or governance

● Overwhelmed fighting fires
● High-leverage work suffers



Self-serve is the key



🔑  Operations data maturity checklist

“read”

☐  Clean operational 
data exists

☐  Business knows 
where to find it

☐  Business can 
self-serve insights

“write”

☐  Business can 
proactively identify 
issues

☐  Business can debug 
and rectify exceptions

“leverage”

☐  Business can 
automate handling 
exceptions

☐  Business can 
improve operational 
processes over time



Introducing a system for business 
alerting and automation



Motivating use cases



An ideal business user experience



What a solution could look like



What a solution could look like



🔑  Common pattern amongst best internal tools

Select data  Trigger 
actions

Write business 
rules

A system for business users to detect and act quickly

Business users need to combine 
real-time with warehouse data

Business users need to route data to 
Slack alerts, emails, customer 
communications etc.

Business users need to set and 
change thresholds



How to get the most out of a business 
alerting and automation system



#1 Route operations data correctly



Example: fraud data operations



#2 Deep dive: alerting best practices

Content
 
❏ Which system created 

the alert
❏ Description
❏ Severity of deviance
❏ Link to resolve / debug
❏ Owner
❏ SLA for resolution

Tip: Use emojis to help skim!

Management

❏ Audit and action logs
❏ Debugging dashboards

Tip: Snooze or set 
reminder schedules 

Alerts should be real, urgent and actionable

Creation

❏ Don’t re-alert for the 
same issue

❏ Calibrate as early and 
often as possible

❏ Aim for <5 / week

Tip: Over-monitoring is 
harder to solve than 
under-monitoring



Example: a fraud alert

System of origin

Clear owner Skimmable

Link to details

Urgency level

Relevant info

Call to action

Deviance



#3 Iterate, iterate, iterate

Monitoring as code
 
❏ Version control changes
❏ Backtest
❏ Permissioning
❏ Approval process

Management

❏ Ensure commensurate 
staffing

❏ Groom backlogs every 
month

❏ Track time to resolve 
and automate biggest 
time sinks

❏ Consolidate 
decisioning systems

Improve signal

❏ Weed out alerts >x% 
false positive rate

❏ Consolidate alerts that 
have >x% overlap

❏ Distinguish between 
data and system failure 



Example: Improving fraud alerting system

Step 1
Add a Slack notification & adjust thresholds

Step 2
Create review tickets

Step 3
Auto reject



🔑  How to get the most out of a business alerting 
and automation system

Route data correctly
Decision Tree + Example

Deep dive: alerting best practices
Checklist + Example

Iterate, iterate, iterate
Checklist + Ladder



References &
Success Stories



Case study: Oscar Health

Reference https://medium.com/oscar-tech/an-equal-partnership-between-tech-and-business-69b8c16a499b, 03/20/2022

Built Automat, a self-service configuration platform

https://medium.com/oscar-tech/an-equal-partnership-between-tech-and-business-69b8c16a499b


Case study: Uber

Reference https://eng.uber.com/mastermind/ , 03/20/2022

Built Mastermind, a real-time fraud rules engine

https://eng.uber.com/mastermind/


And results you won’t find blogs about



Summary



🔑  What we talked about

❏ 200+ leaders’ operations data needs
❏ Self-serve maturity checklist

❏ A system for business alerting & automation
❏ Reference architecture for Data → Triggers → Action

❏ How to get the most out of it
❏ Examples and best practices on how to route data, alert and iterate

❏ References & success stories
❏ Architectures and case studies

I think about this a lot because we’re 
building it – let’s talk!
@jesikaharia
jesika@logicloop.com



MARCH 23 - 24, 2022



NFT Drop



Closing Keynote 

DevOps for ML and 
Other Half-Truths

Diego Oppenheimer, EVP, DataRobot



MARCH 23 - 24, 2022



When Speaker 
Slides?



Thank you 


