
Get Ready for ML!

Level Up Your Data Lake

With Delta and

Data Council – Austin

March 2022

Speakers

Adi Polak
Vice President of Developer Experience | Treeverse

Adi is an open-source technologist who believes in communities and is passionate about building a better world through open
collaboration. As Vice President of Developer Experience at Treeverse, Adi helps build lakeFS, git-like interface for
the data lakehouse. In her work, she brings her vast industry research and engineering experience to bear in educating and
helping teams design, architect, and build cost-effective data systems and machine learning pipelines that emphasize scalability,
expertise, and business goals.

Adi is a frequent worldwide presenter and the author of O'Reilly's upcoming book, "Machine Learning With Apache Spark." Adi
is also a proud Beacon for Databricks! Previously, she was a senior manager for Azure at Microsoft, where she focused on
building advanced analytics systems and modern architectures.

Paul Singman
Developer Advocate | Treeverse

Paul is a developer advocate for the lakeFS project, after several years on the analytics team at Equinox Fitness. His goal is to
democratize big data analytics through explaining data architectures that are both user-friendly and cost-effective. He's spoken
at various conferences and meetups, including the Postgres Conference NYC and AWS re:Invent. When not working you can find
him drinking tea and playing golf

Narrative Flow

Level 0: Basic Data Lake

Narrative Flow

Level 0: Basic Data Lake

Level 1: Table-Format Enhanced

Narrative Flow

Level 0: Basic Data Lake

Level 1: Table-Format Enhanced

Level 2: Full Data Version Control

L0: Basic Data Lake

L0: Basic Data Lake

Object Store

L0: Basic Data Lake

Object Store

.cs
v

.cs
v

.cs
v

Objects being stored

L0: Basic Data Lake

Object Store

.cs
v

.cs
v

.cs
v

Date-separated .csv files

L0: Basic Data Lake

Object Store

.cs
v

.cs
v

.cs
v

Date-separated .csv files

ML
BI

Data-Intensive APIs

Why Object Storage?

are awesome in terms of

Why Object Storage?

are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

Why Object Storage?

are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

• Achieve 3.5k PUT requests per second
per prefix

• 5.5k GET requests per
second per prefix

• Auto-scales to this limit automatically
and overall capacity is limitless

• "something like 11 '9's of availability"

Why Object Storage?

are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

• Storage: $.023 per GB vs $.10 for RDS
or $.12 for EBS

• Network:
• $5 per milllion PUT, $.40 per

million GET requests,
• $0 transfer data in, $.09 per GB

for data transfer out
• ~5-8x times cheaper than block

storage

Why Object Storage?

are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience • Mature client SDKs

• Strong Consistency (2020)
• AWS Storage Lens (2020)
• Feature-rich (events,

permissions, inventories,
replication...)

Why Object Storage?

are awesome in terms of

• Mature client SDKs
• Strong Consistency (2020)
• AWS Storage Lens (2020)
• Feature-rich (events,

permissions, inventories,
replication...)

Why Object Storage?

are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

Why Object Storage?

are awesome in terms of

• Performance
• Cost

• Connectivity
• Developer Experience

Why Object Storage?

Object Store

.cs
v

.cs
v

.cs
v

Date-separated .csv files

ML
BI

Data-Intensive APIs

L0: Basic Data Lake

Now let's make object store-specific improvements

Object Store

.cs
v

.cs
v

.cs
v

Date-separated .csv files

ML
BI

Data-Intensive APIs

L0: Basic Data Lake

.p
arq

uet

.p
arq

uet

.p
arq

uet

L0.5: Parquet File Format

Object Store

.p
arq

uet

.p
arq

uet

.p
arq

uet

Date-separated .csv files

L0.5: Parquet File Format

Object Store

.p
arq

uet

.p
arq

uet

.p
arq

uet

Date-separated .csv files

L0.5: Parquet File Format

Benefits of parquet:
1. Columnar
2. Compressible
3. Complex

Object Store

.p
arq

uet

.p
arq

uet

.p
arq

uet

Date-separated .csv files

L0.5: Parquet File Format

Challenges with parquet:
1. Operates at the object level

L1: Modern Table Formats

Tables comprised of
optimized datafiles +
transaction log(s)

Object Store

L1: Modern Table Formats

Tables comprised of
optimized datafiles +
transaction log(s)

Object Store

New Operations at the table level
• Define schema
• Traverse versions
• Upsert atomically

Implementations:
• Apache Hudi
• Apache Iceberg
• Delta Lake

L2: Data Version Control

L2: Data Version Control

Branches of
tables within a
repository

Data Repo

Object Store

L2: Data Version Control

Branches of
tables within a
repository

Data Repo

Object Store

New Operations at the branch level
• Traverse among commits
• Merge two branches
• Create a new branch
• Take a commit

Implementations:
• lakeFS
• Proj Nessie

L2: Data Version Control Applications

New Operations at the branch level

Traverse among commits

Merge two branches

Create a new branch

Take a commit

L2: Data Version Control Applications

New Operations at the branch level

Traverse among commits

Merge two branches

Create a new branch

Take a commit

lakeFS CLI Example

$ lakectl revert main^1

$ lakectl merge my-branch-main

$ lakectl branch create my-branch

$ lakectl commit –m "new commit"
my-branch

L2: Data Version Control Applications

New Operations at the branch level

Traverse among commits

Merge two branches

Create a new branch

Take a commit

lakeFS CLI Example

$ lakectl revert main^1

$ lakectl merge my-branch-main

$ lakectl branch create my-branch

$ lakectl commit –m "new commit"
my-branch

Useful for...

Instant recovery from issues

Atomic updates (cross-coll)

Dev Environment creation

Reproducing ML experiments

Leveling Up Data Lake Takeaways

Data Repo

Stop operating at
the file level

Start operating at the table
and repository level

THANK YOU!

.io

