
The Modern Stack
for ML Infrastructure

Ville Tuulos

The modern stack?

🤔

The stack?

🤔

The Evolution of Web Stacks

LAMP (1998)

The Evolution of Web Stacks
LAMP (1998)

Figure by Shmuel Csaba Otto Traian / Wikipedia

The Evolution of Web Stacks

LAMP (1998) MEAN (2013)

The Evolution of Web Stacks

APIs

Javascript

Markup

LAMP (1998) MEAN (2013) JAM (2015)

The Evolution of Web Stacks

APIs

Javascript

Markup

LAMP (1998) MEAN (2013) JAM (2015)

The stack becomes less technical, more human-centric 😊

The Evolution of Web Stacks

APIs

Javascript

Markup

LAMP (1998) MEAN (2013) JAM (2015)

The stack becomes simpler, more capable over time 💪

The stack for ML infrastructure will become

simpler, more capable 💪
&

more human-centric 😊

CLAM (1998)

The Evolution of ML Stack

MLOps (2018) Future?

🔮

The stack becomes less technical, more human-centric 😊

Let’s design
a modern ML stack
from the ground up

Here’s a data scientist

A modern data scientist uses a cloud workstation

Cloud
workstation

Data

Data flows seamlessly from the data warehouse to the workstation

Cloud
workstation

Data warehouse

Data

Compute
Data warehouse

Cloud
workstation

Experiments run at scale on a cloud-based compute cluster

Compute resources

Data

Compute

Orchestration

Cloud
workstation

Complete workflows are developed and tested locally

Data warehouse

Workflow
orchestrator

Compute resources

Data

Compute

Orchestration

Versioning

Compute resources

Workflow
orchestrator

Versioning &
metadata

Cloud
workstation

Code, models, logs, and metrics gets stored and versioned automatically

Data warehouse

Data Scientist can develop, test, and iterate on projects rapidly

Example

Define workflows with a human-friendly syntax

class MyFlow(FlowSpec):

 @step
 def start(self):
 import pandas as pd
 pd.DataFrame(big_one)
 self.next(self.end)

 @step
 def end(self):
 pass

start

end

python myflow.py run

Experiments run at scale on a cloud-based compute cluster

@step
def start(self):
 self.params = list(range(100))
 self.next(self.train, foreach='params')

@resources(memory=128000)
@step
def train(self):
 self.model = train(...)
 self.next(self.join)

@step
def join(self, inputs):
 ...

start

endendendendendtrain

join

python myflow.py run –with kubernetes

Everything gets versioned automatically

class MyFlow(FlowSpec):

 @step
 def start(self):
 self.alpha = 0.5
 self.next(self.train)

 @step
 def train(self):
 self.model = train_model(self.alpha)

start

train

Comes with tools for fast data access

class QueryFlow(FlowSpec):
 @step
 def query(self):
 self.ctas = "CREATE TABLE %s AS %s" % (self.table, self.sql)
 query = wr.athena.start_query_execution(self.ctas)
 output = wr.athena.wait_query(query)
 loc = output['ResultConfiguration']['OutputLocation']
 with metaflow.S3() as s3:
 results = [obj.url for obj in s3.list_recursive([loc])

Data Scientist can develop, test, and iterate on projects rapidly

http://www.youtube.com/watch?v=YSJXn6KLzXg

From prototype to
Production

Decision-support systems Product features

Data enrichmentOn-device ML

Real-world ML comes in many shapes and sizes

Data

Compute

Orchestration

Versioning

Architecture

There is not a single production but many
Provide architectural blueprints to support various deployment patterns

Metaflow Example
Single-click deployment (and back)

python myflow.py resume --origin-run-id sfn-199874

python myflow.py step-functions create

Prototype Production

Data

Compute

Orchestration

Versioning

Architecture

Operations

Continuous deployment, continuous experimentation

Metaflow example
Deploy parallel models for A/B testing

Project: LTV

@project(name='LTV')
class TrainingFlow(FlowSpec):

 @step
 def start(self):

@project(name='LTV')
class PredictFlow(FlowSpec):

 @step
 def start(self):

@project(name='LTV')
class TrainingFlow(FlowSpec):

 @step
 def start(self):

@project(name='LTV')
class PredictFlow(FlowSpec):

 @step
 def start(self):

python myflow.py –branch a deploy

python myflow.py –branch b deploy

Data

Compute

Orchestration

Versioning

Architecture

Operations

Features

Images

Relational data Streaming events

Semi-structured data

Data scientists can experiment with features flexibly…

Data

Compute

Orchestration

Versioning

Architecture

Operations

Features

Models

Deep neural networks Embeddings

Model EnsemblesDecisions trees

…as well as iterate on various modeling approaches…

Data

Compute

Orchestration

Versioning

Architecture

Operations

Features

Models

because that’s what data scientists are mostly supposed to do!

How much
data scientist

cares

How much
infrastructure

is needed

Data

Compute

Orchestration

Versioning

Architecture

Operations

Features

Models

The full stack as a single, coherent, user-friendly package

CLAM (1998)

The Evolution of ML Stack

MLOps (2018) Future!

User-friendly
Coherent
Full stack

The stack becomes simpler, more capable over time 💪

Shameless plug: New book!
Effective Data Science Infrastructure

Thank you

Curious to learn more about open-source Metaflow?
Join 1000+ data scientists and engineers at

http://slack.outerbounds.co

