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The stack for ML infrastructure will become

simpler, more capable 💪
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more human-centric 😊
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The stack becomes less technical, more human-centric 😊



Let’s design
a modern ML stack 
from the ground up



Here’s a data scientist



A modern data scientist uses a cloud workstation

Cloud 
workstation



Data

Data flows seamlessly from the data warehouse to the workstation

Cloud 
workstation

Data warehouse



Data

Compute
Data warehouse

Cloud 
workstation

Experiments run at scale on a cloud-based compute cluster

Compute resources
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Complete workflows are developed and tested locally
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Data
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Versioning

Compute resources

Workflow 
orchestrator

Versioning &
metadata

Cloud 
workstation

Code, models, logs, and metrics gets stored and versioned automatically

Data warehouse



Data Scientist can develop, test, and iterate on projects rapidly



Example



Define workflows with a human-friendly syntax

class MyFlow(FlowSpec):

    @step
    def start(self):
        import pandas as pd
        pd.DataFrame(big_one)
        self.next(self.end)

    @step
    def end(self):
        pass

start

end

# python myflow.py run



Experiments run at scale on a cloud-based compute cluster

@step
def start(self):
    self.params = list(range(100))
    self.next(self.train, foreach='params')

@resources(memory=128000)
@step
def train(self):
    self.model = train(...)
    self.next(self.join)

@step
def join(self, inputs):
    ...

start

endendendendendtrain

join

# python myflow.py run –with kubernetes 



Everything gets versioned automatically

class MyFlow(FlowSpec):

    @step
    def start(self):
        self.alpha = 0.5
        self.next(self.train)

    @step
    def train(self):
        self.model = train_model(self.alpha)

start

train



Comes with tools for fast data access

class QueryFlow(FlowSpec):
    @step
    def query(self):
        self.ctas = "CREATE TABLE %s AS %s" % (self.table, self.sql)
        query = wr.athena.start_query_execution(self.ctas)
        output = wr.athena.wait_query(query)
        loc = output['ResultConfiguration']['OutputLocation']
        with metaflow.S3() as s3:
            results = [obj.url for obj in s3.list_recursive([loc])



Data Scientist can develop, test, and iterate on projects rapidly

http://www.youtube.com/watch?v=YSJXn6KLzXg


From prototype to
Production



Decision-support systems Product features

Data enrichmentOn-device ML

Real-world ML comes in many shapes and sizes



Data

Compute

Orchestration

Versioning

Architecture

There is not a single production but many
Provide architectural blueprints to support various deployment patterns



Metaflow Example
Single-click deployment (and back)

# python myflow.py resume --origin-run-id sfn-199874

# python myflow.py step-functions create

Prototype Production



Data

Compute

Orchestration

Versioning

Architecture

Operations

Continuous deployment, continuous experimentation



Metaflow example
Deploy parallel models for A/B testing

Project: LTV

@project(name='LTV')
class TrainingFlow(FlowSpec):

    @step
    def start(self):

@project(name='LTV')
class PredictFlow(FlowSpec):

    @step
    def start(self):

@project(name='LTV')
class TrainingFlow(FlowSpec):

    @step
    def start(self):

@project(name='LTV')
class PredictFlow(FlowSpec):

    @step
    def start(self):

# python myflow.py –branch a deploy

# python myflow.py –branch b deploy
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Features

Images

Relational data Streaming events

Semi-structured data

Data scientists can experiment with features flexibly…
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Models

Deep neural networks Embeddings

Model EnsemblesDecisions trees

…as well as iterate on various modeling approaches…
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because that’s what data scientists are mostly supposed to do!

How much
data scientist

cares

How much
infrastructure

is needed
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The full stack as a single, coherent, user-friendly package
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The Evolution of ML Stack
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User-friendly
Coherent 
Full stack

The stack becomes simpler, more capable over time 💪



Shameless plug: New book!
Effective Data Science Infrastructure



Thank you

Curious to learn more about open-source Metaflow?
Join 1000+ data scientists and engineers at

http://slack.outerbounds.co


