
Cover Option 1

Data Lineage with Apache
Airflow using OpenLineage

Julien Le Dem and Willy Lulciuc, Datakin | March 2022

1

The company behind
Apache Airflow

The principal sponsors of
OpenLineage & Marquez

Agenda

The need for lineage metadata

OpenLineage and Marquez
● OpenLineage, an open standard for lineage collection
● Marquez, its reference implementation

Airflow observability with OpenLineage

4

The key = data lineage

5

Data lineage contains what
we need to know to solve our
most complicated problems.

● Producers & consumers of
each dataset

● Inputs and outputs of
each job

Building a healthy data ecosystem

6

Team A

Team C

Team B

7

● What is the data source?
● What is the schema?
● Who is the owner?
● How often is it updated?
● Where does it come from?
● Who is using it?
● What has changed?

DATA

Limited metadata = limited context

Maslow’s Data hierarchy of needs

8

New Opportunities

Business Optimization

Data Quality

Data Freshness

Data Availability

9

To define an open standard
for the collection of lineage
metadata from pipelines
as they are running.

OpenLineage
Mission

OpenLineage contributors

10

The snowball effect

The best time to collect metadata

12

…or you can capture it
when the image is
originally created!

You can try to infer the
date and location of an
image after the fact…

rocks

26m until
sunset

haze

Before OpenLineage

13

Analysis Tools
Schedulers Warehouses

SQL Engines

With OpenLineage

14

Analysis Tools
Schedulers Warehouses

SQL Engines

Graph DB

Backend

Producers

OpenLineage

Kafka topic

HTTP
client

Consumers

Kafka
client

GraphDB
client

Kafka
client

Where OpenLineage potentially fits

15

Kafka topic

Data model

16

Built around core entities:
Datasets, Jobs, and Runs

Defined as a JSONSchema
spec

Consistent naming for:
Jobs (scheduler.job.task)
Datasets (instance.schema.table)

transition
transition time

Run State Update

run uuidRun

job id
(name based)

Job

dataset id
(name based)

Dataset

Run Facet

Job Facet

Dataset
Facet

run

job

inputs /
outputs

How OpenLineage events work

17

Lineage is reported as a
series of asynchronous
run events.

Each event passes a unique
client-generated run ID to:

● identify the run
● correlate events

Send start event
● source code version
● run parameters

Send complete event
● input dataset
● output dataset version
● output schema

Typical event series:

runID
eventType: START

event time
producer

input datasets

runID
eventType: ABORT

event time
producer

runID
eventType: FAIL

event time
producer

runID
eventType: COMPLETE

event time
producer

output datasets

18

Lifecycle of a job run

START

ABORT

FAIL

COMPLETE

Scalable

Prefixes on names are used to
establish discrete namespaces

19

Self-documenting

Facets can be given unique,
memorable names

Extending the model with Facets

Familiar

Facets are defined using JSON
schema objects

Facets are atomic pieces of metadata attached to core entities.

Flexible

Facets can be attached to any
core entity: Job, Dataset & Run

Facet examples

Dataset:
● Stats
● Schema
● Version

Job:
● Source code
● Dependencies
● Source control
● Query plan

Run:
● Scheduled time
● Batch ID
● Query profile
● Params

20

OMG the possibilities are endless

21

Dependency tracing
Root cause identification
Issue prioritization
Impact mapping
Precision backfills
Anomaly detection
Change management
Historical analysis
Compliance

22

● Centralized metadata
management
○ Sources
○ Datasets
○ Jobs

● Features
○ Data governance
○ Data lineage
○ Data discovery +

exploration

Metadata Service

Marquez: Design

Marquez

Core

Lineage

Search

REST API

ETL Batch Stream

Marquez: Data model

Job

Dataset Job Version

Run

*

1

*

1

*

1

1*

1*
Source

1 *

● MYSQL
● POSTGRESQL
● REDSHIFT
● SNOWFLAKE
● KAFKA
● S3
● ICEBERG
● DELTALAKE

● BATCH
● STREAM
● SERVICE

Dataset Version

v4Dataset
v2

v4
v4

Job
v1

Dataset
v4

Job
v2

Marquez: Data model

● Debugging
○ What job version(s) produced and

consumed dataset version X?

● Backfilling
○ Full / incremental processing

Design benefits

26

Airflow observability with
OpenLineage

Airflow

D
A

G

D
A

G

D
A

G

D
A

G

Marquez Lib.

● Metadata
○ Task lifecycle
○ Task parameters
○ Task runs linked to versioned code
○ Task inputs / outputs

● Lineage
○ Track inter-DAG dependencies

● Built-in
○ SQL parser
○ Link to code builder (GitHub)
○ Metadata extractors

Marquez: Airflow

Airflow support for Marquez

DAG

M
arqu

ez Lib
.

In
tegration

Marquez

R
ES

T
A

PI

Capturing task-level metadata in a
nutshell

Marquez: Airflow

Job

Dataset Job
Version

RunDataset
Version

*
1

*
1

1*

1*
Source

1 *

*
1

Airflow

● Open source! 🥇
● Enables global task-level metadata collection
● Extends Airflow’s DAG class

from marquez_airflow import DAG
from airflow.operators.postgres_operator import PostgresOperator

...

room_bookings_7_days_dag.py

Marquez: Airflow

Marquez Airflow Lib.

airflow.operators.PostgresOperator

marquez_airflow.extractors.PostgresExtractor

Extractor

Operator

Metadata

Airflow

Marquez
Airflow
Library

Marquez: Airflow

Marquez: Airflow

t1=PostgresOperator(
 task_id=’new_room_booking’,
 postgres_conn_id=’analyticsdb’,
 sql=’’’
 INSERT INTO room_bookings VALUES(%s, %s, %s)
 ’’’
 parameters=... # room booking
)

Operator Metadata

Source01
new_room_booking_dag.py

Marquez: Airflow

t1=PostgresOperator(
 task_id=’new_room_booking’,
 postgres_conn_id=’analyticsdb’,
 sql=’’’
 INSERT INTO room_bookings VALUES(%s, %s, %s)
 ’’’
 parameters=... # room booking
)

Operator Metadata

Source01

02 Dataset

new_room_booking_dag.py

Marquez: Airflow

t1=PostgresOperator(
 task_id=’new_room_booking’,
 postgres_conn_id=’analyticsdb’,
 sql=’’’
 INSERT INTO room_bookings VALUES(%s, %s, %s)
 ’’’
 parameters=... # room booking
)

Operator Metadata

02 Dataset

03 Job

new_room_booking_dag.py
Source01

Marquez: Airflow

new_room_bookings_dag.py top_room_bookings_dag.py

Managing inter-DAG dependencies

Marquez: Airflow

new_room_bookings_dag.py top_room_bookings_dag.py

Managing inter-DAG dependencies

b940314,1541624285,2

TSLOCATION ROOM

b648485,1541501885,9

b648485,1541710685,4

public.room_bookings

36

https://docs.google.com/file/d/1QgM5gkcEdexk1UkraLYZQx9HbHgbbjMy/preview

Join the conversation

37

github.com/openlineage

openlineage.slack.com

@openlineage

groups.google.com/g/openlineage

github.com/marquezproject

marquezproject.slack.com

@marquezproject

Thanks :)

