

Making Humans & Code GPU-Capable

Data Council Austin 2022

Emily May Curtin

Senior ML Ops Engineer, Mailchimp/Intuit @emilymaycurtin

Howdy, I'm Emily

- ATLien (don't call it Hotlanta)
- X #NotADataScientist
- 👸 Oil painter by passion
- H MLOps by day job (btw we're hiring!)
- 🤎 Big fan of <u>Ryan Curtin</u>

Our Goal: Help Data Scientists produce higher quality work faster

MLOps

is a hyper-technical field that is

all about people

æ

Inherent Design Tradeoff

G

Let's talk

about ML

stacks

Typical ML Tech Stack

- Python
- Pytorch, HuggingFace, Tensorflow
- Docker
- Cloud infrastructure (we happen to use GCP)
- Kubernetes either directly or indirectly

Benefits

- Good scalability, reproducibility
- Cloud infra good for spiky ML workloads (vs. more consistent, predictable web service)

But...

Let's talk

about GPUs

GPUs Can Be Really Awesome

GPUs...

- Are optional hardware peripherals
- Require special drivers
- Rely on system buses for I/O

GPUs...Are Printers

GPUs...Are Printers

That are very good at linear algebra

Call Stack on a plain server

,	An actual, real, not virtual GPU
	A physical server
	OS
	GPU device drivers
	CUDA libs
	ML Library (PyTorch, etc.)
	My Super Awesome Service Library
	My Amazing Service w/n MC's service framework

Call Stack on a plain server

My Amazing Service w/n MC's service framewor				
My Super Awesome Service Library				
ML Library (PyTorch, Tensorflow, XGBoost, etc.)				
CUDA libs				
GPU device drivers				
OS				
A physical server				
An actual, real, not virtual				

Call in th epho wor	Stack ne emeral ld	My Amazing Service My Super Awesome Service Library ML Library (PyTorch, etc.) Container Pod				
	Kubernetes					
	Nodes (virtual servers)					
	Probably like some h	ypervisors or whatever idk it's the cloud this layer doesn't	tend to bother me			
	An actual, real, not virtual GPU					

What you need to talk to a GPU

- GPU
- Drivers
 - o nvidia.ko-KernelmodeGPUdriver
 - o libcuda.so User mode GPU driver (aka low-level API)
- CUDA Toolkit
 - o libcudart.so-Runtime API (aka high-level API)
 - cuBLAS, cuRAND, cuSOLVER, and other toolkit libs

GPUs and

Device

Drivers

These come from your k8s service provider, GKE in my case

GKE Provides

- Configurable GPUs and GPU pools
- DaemonSet for device drivers

Solutions Cloud Why Google Solutions	Products Pricing Getting Started	Q	D
Google Kubernetes Engine (GKE) Overview	Guides Reference Samples Support Resources		_
Kubernetes Engine Product overview Anthos GKE home	About the CUDA libraries CUDA® [2] is NVIDIA's parallel computing platform and programming model for GPUs. The NVIDIA device drivers you install in your cluster include the CUDA libraries [2].		
Quickstarts GKE quickstart Deploying a language-specific app	CUDA libraries and debug utilities are made available inside the container at /usr/local/nvidia/lib64 and /usr/local/nvidia/bin, respectively.	es	
Samples All Kubernetes Engine code samples All code samples for all products	including /usr/local/nvidia/lib64 in the LD_LIBRARY_PATH environment variable. You should use Ubunty based CUDA Docker base images [2] for CUDA epplications in GKE, where LD_LIBRARY_PATH already set appropriately. The latest supported CUDA version is 11.0 on both COS (1.18.6-gke.3504+) and Ubuntu	is	
How-to guides All how-to guides Creating clusters	(1.19.8-gke.1200+). Monitoring GPU nodes		

Various **CUDAAPIs**

and other libs

- Some Python ML Libs ship with binaries in the wheels
 - Dependent on Python package manager (pip, anaconda, etc)
 - Usually does not include libcuda.so
- Might be made available via your device driver Daemonset
 - Set LD_LIBRARY_PATH to access
 - Usually only API binaries, not other toolkit libs
- Might have to DIY via base container or custom install step
- Might have to combine all of the above

Matching CUDA Versions Matters

- CUDA version supported by your ML library of choice
- CUDA version in your base docker image
- CUDA version available on your k8s nodes, exposed through Daemonset

Matching CUDA Versions Matters*

Matching CUDA Versions Matters*

*Sometimes. Depending. Maybe not.

E

Matching CUDA Versions Matters*

*Sometimes. Depending. Maybe not.

YMMV depending on your library

- PyTorch does a lot of stuff to support 10.x and 11.x
- Tensorflow is very picky about everything

CUDA has complex forward and backward compatibility scenarios

ltrace and strace rock

DESCRIPTION top

ltrace is a program that simply runs the specified *command* until it exits. It intercepts and records the dynamic library calls which are called by the executed process and the signals which are received by that process. It can also intercept and print the system calls executed by the program.

Its use is very similar to strace(1).

ltrace shows parameters of invoked functions and system calls. To determine what arguments each function has, it needs external declaration of function prototypes. Those are stored in files called prototype libraries--see ltrace.conf(5) for details on the syntax of these files. See the section PROTOTYPE LIBRARY DISCOVERY to learn how ltrace finds prototype libraries.

root@python39-torch111-cu113:/# strace python test cuda torch.py 2>&1 | grep -E '^open(at)?\(.*\.so' | grep 'cuda' openat(AT FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch cuda.so", 0 RDONLY|0 CLOEXEC) = 3 openat(AT FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch cuda cpp.so", 0 RDONLY|0 CLOEXEC) = 3 openat(AT FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libc10 cuda.so", 0 RDONLY|0 CLOEXEC) = 3 openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libtorch_cuda_cu.so", 0_RDONLY[0_CLOEXEC) = 3 openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libcudart-a7b20f20.so.11.0", 0_RDONLY|0_CLOEXEC) = 3 openat(AT_FDCWD, "/usr/local/lib/python3.9/site-packages/torch/lib/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/tls/haswell/avx512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/tls/haswell/avx512 1/libcuda.so", 0 RDONLY10 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/tls/haswell/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/tls/haswell/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/tls/avx512 1/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/tls/avx512 1/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-qnu/tls/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86_64-linux-gnu/tls/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1_ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/haswell/avx512_1/x86_64/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/haswell/avx512_1/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/haswell/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/haswell/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/avx512 1/x86 64/libcuda.so", 0 RDONLY/0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/lib/x86_64-linux-gnu/avx512_1/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/x86 64-linux-gnu/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/tls/haswell/avx512 1/x86 64/libcuda.so", O RDONLY|O CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/tls/haswell/avx512_1/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/tls/haswell/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/tls/haswell/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/tls/avx512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory), openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/tls/avx512_1/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/tls/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/tls/libcuda.so", 0 RDONLY/0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/haswell/avx512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-qnu/haswell/avx512 1/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/haswell/x86_64/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/haswell/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT_FDCWD, "/usr/lib/x86_64-linux-gnu/avx512_1/x86_64/libcuda.so", 0_RDONLY[0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/avx512 1/libcuda.so", 0 RDONLY/0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86_64-linux-gnu/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/usr/lib/x86 64-linux-gnu/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/tls/haswell/avx512 1/x86 64/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/tls/haswell/avx512 1/libcuda.so", 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory) openat(AT FDCWD, "/lib/tls/haswell/x86 64/libcuda.so", 0 RDONLY|0 CL0EXEC) = -1 ENOENT (No such file or directory) openat(AT EDCWD, "/lib/tls/baswell/libcuda.so", 0 RDONLY10 CLOEXEC) = -1 ENOENT (No such file or directory)

s/torch/lib/libtorch_cuda.so", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libtorch_cuda_cpp.so", 0_RDONLY 0 CLOEXEC) = 3 s/torch/lib/libc10_cuda.so", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libtorch cuda cu.so", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libcudart-a7b20f20.so.11.0", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libcuda.so'', 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory)512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) 512 1/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 64/libcuda.so'', 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) cuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 6 64/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) bcuda.so", $0_RDONLY|0_CLOEXEC) = -1 ENOENT$ (No such file or directory) uda.so", O RDONLY O CLOEXEC) = -1 ENOENT (No such file or directory) . O RDONLYIO CLOEXEC) = -1 ENOENT (No such file or directory)

s/torch/lib/libtorch_cuda.so", 0 RDONLY|0 CLOEXEC) = 3 s/torch/lib/libtorch_cuda_cpp.so", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libc10_cuda.so", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libtorch cuda cu.so", 0 RDONLY|0 CLOEXEC) = 3 s/torch/lib/libcudart-a7b20f20.so.11.0", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libcuda.so"_ 0_RDONLX|0_CLOEXEC) = -1 ENOENT (No such file or directory) 512_1/ 86_64/libruda.set, P_RDON X+0_CLOEXECY = _1 ENDENT (No such file or)irectory) 512_1 ib uda sc", 0 RD(NL T _CL EX) C = 1 FNO NT (o such irectorv) 64/libcuda.so'', 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) cuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 6 64/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) bcuda.so", 0 RDONLY | 0 CLOEXEC) = -1 ENOENT (No such file or directory) uda.so", O RDONLY O CLOEXEC) = -1 ENOENT (No such file or directory) 0 RDONLYIO CLOEXEC) = -1 ENGENT (No such file or directory)

s/torch/lib/libtorch_cuda.so", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libtorch_cuda_cpp.so", 0_RDONLY 0 CLOEXEC) = 3 s/torch/lib/libc10_cuda.so", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libtorch cuda cu.so", 0 RDONLY/0 CLOEXEC) = 3 s/torch/lib/libcudart-a7b20f20.so.11.0", 0_RDONLY|0_CLOEXEC) = 3 s/torch/lib/libcuda.so'', 0 RDONLY|0 CLOEXEC) = -1 ENOENT (No such file or directory)512_1/x86_64/libcuda.so", 0_RDONLY|0_CLOEXEC) = -1 ENOENT (No such file or directory) 512 1/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 64/libcuda.so'', 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) cuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) 6 64/libcuda.so", 0 RDONLY 0 CLOEXEC) = -1 ENOENT (No such file or directory) bcuda.so", $0_RDONLY|0_CLOEXEC) = -1 ENOENT$ (No such file or directory) uda.so", O RDONLY O CLOEXEC) = -1 ENOENT (No such file or directory) . O RDONLYIO CLOEXEC) = -1 ENOENT (No such file or directory)

MLOps

is a hyper-technical field that is

all about people

æ

E

E

Systems Abstraction

Providing a good enough encapsulation of the system so Data Scientists can focus on the application layers.

It's really hard.

Most MLOps systems are *full* of leaky abstractions.

Data Scie focu the t laye	a entists is on top ers	My Amazing Service My Super Awesome Service Library ML Library (PyTorch, etc.) Container Pod				
	Kubernetes					
	Nodes (virtual servers)					
	Probably like some hypervisors or whatever idk it's the cloud this layer doesn't tend to bother me					
	Physical Servers					
An actual, real, not virtual GPU						

E

Design Tradeoffs

Doesn't do what I need it to do

E

Too Open Ended

How on earth do I make it do what I need it to do

To enable high

tech,

go low tech

GPUs for ML

... via repo templating

@lowcost_cosplay

Repo templating is not cool. And it works.

Repo Templating

- Provide a good enough, general enough base for the majority
- Includes
 - Base container to encapsulate the runtime environment
 - Places to integrate custom Python code
 - Basic run scripts for applications
 - Basic CI/CD stuff (ex: Jenkinsfile)
- GPU capability built in via base container(s)

Challenges

- Is your base container general enough? Will it match prod?
- Differences between libraries, batch jobs, live services, etc.
- How do children of a template get updates from the parent?
- How do we provide general GPU capability to everything using the template(s)?

Some Hard-Won Wisdom

- One template per project type (library, batch job, etc.) with shared base containers.
- Allow massive flexibility in ML lib choice within your language
- One base container is probably not good enough. Have curated options. (ex: tensorflow breaks everything)
- Design for the 90% cases, don't generalize the other 10%

In Conclusion

@emilymaycurtin

- MLOps is a super technical role that's **all about people**
- strace is your friend
- Repo templating is your friend
- Be uncool to do cool stuff

Thank you.