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Overview
● Why & What Ray & Ray Ecosystem
● Ray Architecture & Components
● Ray Core APIs
● Ray Native ML Libraries 

○ Ray Tune, XGBoost-Ray
● Demo

○ Scaling ML workloads
● Q & A



- Machine learning is pervasive in every 
domain

- Distributed machine learning is becoming a 
necessity

- Distributed systems is notoriously hard
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35x every 18 months

2020
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Specialized hardware is also not enough

CPU

https://openai.com/blog/ai-and-compute/
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35x every 18 months

2020

GPT-3

Specialized hardware is also not enough

Moore’s Law (2x every 18 months)
CPU

https://openai.com/blog/ai-and-compute/

GPU*
TPU
*

No way out but to distribute!

https://openai.com/blog/ai-and-compute/


- Machine learning is pervasive in every 
domain

- Distributed machine learning is becoming a 
necessity

- Distributed systems and programming are 
notoriously hard

Why Ray? 
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- Machine learning is pervasive in every domain
- Distributed machine learning is becoming a necessity
- Distributed systems are  notoriously hard

Ray’s  vision: 
Make distributed computing accessible to every developer

Why Ray?



The Ray Layered Cake and Ecosystem
Datasets 

Workflows 

Run 
anywhere

Universal 
framework 
for 
distributed 
computing

Library + 
app 
ecosystem



Rich ecosystem for scaling ML workloads

Ray Core 
/ Datasets

Model 
Serving

Data
Processing Training Serving

Ray Core + 
Datasets

Reinforcement
Learning

Hyper.
Tuning

** a small subset of the Ray ecosystem in MLOnly use the libraries you need!

Ray Train
Built-in
“batteries 
included”
libraries



Companies scaling ML with Ray



Ray Core 
/ Datasets

Model 
Serving

Data
Processing Training Serving Reinforcement

Learning
Hyper.
Tuning

Companies scaling ML with Ray

● https://eng.uber.com/horovod-ray/
● https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray
● https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve

https://eng.uber.com/horovod-ray/
https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray
https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve


Ray’s approach for scaling ML

(with as few code changes as possible)

Runs
on

CPU CPU CPU CPU

GPU A GPU B GPU B GPU B

Runs
on

Same Python code 
runs on laptop as 
infinite cloud!

(Traditional, 
non-parallelized 
vanilla Python)

Ray-ified 
Python



Ray Architecture & Components



What does Ray Cluster Looks Like … 
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   Scheduler 

   Object Store     
Ra

yl
et

 

   Worker    Worker

   Scheduler 

   Object Store     
Ra

yl
et

 

   Worker    Worker

   Scheduler 

   Object Store     
Ra

yl
et

 

Unique to 
Ray

… …

Head Node Worker Nodes Worker Nodes



● One per node
● Resource manager
● Manages worker 

processes

● Centralized 
Component

● Tracks cluster-wide 
properties

● Executes 
actor/task



Ray Distributed Design Patterns & APIs



Ray Basic Design Patterns

• Ray Parallel Tasks
• Functions as  stateless units of execution 
• Functions distributed across a clusters as tasks

• Ray Objects or Futures
• Distributed (immutable) Object stored in cluster 
• Retrievable when available
• Enable asynchronous execution of

• Ray Actors
• Stateful service on a  cluster
• Message passing and maintains state

1. Patterns for Parallel Programming
2. Ray Design Patterns
3. Ray Distributed Library Integration Patterns

https://www.goodreads.com/book/show/85053.Patterns_for_Parallel_Programming
https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit#heading=h.crt5flperkq3
https://www.anyscale.com/blog/ray-distributed-library-patterns


Python → Ray Basic Patterns

Function    

Class               

Object

Task

Actor

(Distributed 
immutable) Object

Node

Node

Node



Function → Task Class → Actor
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

@ray.remote(num_gpus=1)
class Counter(object):
    def __init__(self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()



Task API
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

Blue variables are ObjectRef IDs
(similar to futures) 

read_array

id1

Return id1 (future) immediately, 
before read_array() finishes



Task API
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

read_array

id2

Dynamic task graph:
build at runtime

Blue variables are Object IDs
(similar to futures) 



Task API
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

read_array

id2

add

id

Node 
3

Every task scheduled, 
but not finished yet

Blue variables are Object IDs
(similar to futures) 



Task API
@ray.remote
def read_array(file):
    # read ndarray “a” 
    # from “file” 
    return a

@ray.remote
def add(a, b):
    return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1

Node 1 Node 2

Node 
3

read_array

file2

read_array

add

sumTask graph executed to 
compute sum

Blue variables are Object IDs
(similar to futures) 



Distributed Immutable object store

Worker
 process 

Worker
 process ….

X Y Z

Spill over to 
external storage



Distributed Immutable object store

@ray.remote
def f():
    …
    return X

@ray.remote
def g(a):
    …
    return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

id_X

Node 2

f()

X

id_X

Only X’s id (id_X) is 
returned, not X’s value

.. ..

Shared 
object store



Distributed object store

@ray.remote
def f():
    …
    return X

@ray.remote
def g(a):
    …
    return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

g(id_X)

X

id_X

id_X

Node 2

Y

id_Y

id_Y

g(id_X) is scheduled on same node, so X is never transferred

…

Shared 
object store



How Raylet Schedules Tasks



Scaling to Multiple Nodes



Caching Scheduling Decisions

futures = [double.remote(i) 
for i in range(10000)]
ray.get(futures)

# [0, 2, 4, 6 …]



Ray Ecosystem
● Ray Tune
● XGBoost-Ray



Ray  Tune 



● Efficient algorithms that enable running trials in parallel  
● Effective orchestration of distributed trials
● Easy to use APIs
● Interoperable with Ray Train and Ray Datasets
● Saves cost (early stopping bad trials)

Ray Tune - For distributed HPO

Cutting edge 
optimization algorithms

Minimal code changes to 
work in distributed 

settings

Compatible with ML 
ecosystem



Ray 

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
#tune-search-alg

https://docs.ray.io/en/latest/tune/api_docs/schedulers.
html#tune-schedulers

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers


Hyperparameters

Model 
parameters

● Model type and architecture
● Learning and training related 

parameters
● Pipeline configurations
● Number of trees, depth etc

Set before training

Learn during training

Hyperparameters



Hyperparameter tuning
“choosing a set of optimal hyperparameters for a learning algorithm”

How many layers? What kinds of layers? Learning rate 
schedule?

Every number here is a hyperparameter!

Example: what network structure is best for your binary classification problem?



HPO Challenges at scale

● Time consuming and costly
● Use Resources (GPUs/CPUs) at lower costs
● Fault-tolerance and elasticity 

+$$$



01 02 03Exhaustive 
Search

Bayesian 
Optimization

Advanced 
Scheduling

● Over 15+ algorithms natively provided or integrated
● Easy to swap out different algorithms with no code change

Ray Tune - HPO algorithms



● Easily parallelizable, easy to implement
● Inefficient, compute intensive

Exhaustive Search



● Uses results from previous combinations (trials) to decide 
which trial to try next

Bayesian optimization

https://www.wikiwand.com/en/Hyperparamet
er_optimization

● Inherently sequential
● Popular libraries:

○ hyperopt
○ Optuna
○ Scikit-optimize
○ Nevergrad



● Fan out parallel trials during the initial exploration phase
● Use intermediate results (epochs, trees, samples) to prune 

underperforming trials, saving time and computing resources

Advanced Scheduling - Early stopping

● Median stopping, ASHA/Hyperband
● Can be combined with Bayesian Optimization (BOHB)



Ray Tune - distributed HPO

Head Node

DriverProcess
tune.run(train_func)

Orchestrator running HPO 
algorithm

from ray import tune

def train_func(config):
    model = ConvNet(config)
    for i in range(epochs):
        current_loss = model.train()
        tune.report(loss=current_loss)
 
tune.run(
    train_func,
    config={“alpha”: tune.uniform(0.001, 
0.1)},
    num_samples=100,
    scheduler=“asha”,
    search_alg=”optuna”)
 
 

Easily specify 
hyperparameter 
ranges to search 
over

Easily define your 
training function

Just use 
tun.run(..)



Worker Node

Worker Node

Ray Tune - distributed HPO

Each actor performs one set of hyperparameter 
combination evaluation (a trial)

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Launch Launch

Launch



Worker Node

Worker Node

Ray Tune - distributed HPO

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Report metrics Report metrics

Report metrics

Orchestrator keeps track of all the trials’ 
progress and metrics. 



Worker Node

Worker Node

Ray Tune - distributed HPO

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Early stop Continue

Continue

Based on the metrics, the orchestrator 
may stop/pause/mutate trials or launch 
new trials when resources are available.



Worker Node

Worker Node

Ray Tune - distributed HPO

Resources are repurposed to explore 
new trials.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Launch a new trial



Worker Node

Worker Node

Ray Tune - distributed HPO

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Trials are 
checkpointed to 
cloud storage

Orchestrator also manages checkpoint state.

Checkpoint



Worker Node

Worker Node

Ray Tune - distributed HPO

Some worker process crashes.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func



Worker Node

Worker Node

Ray Tune - distributed HPO

New actor comes up fresh and the 
crashed trial is restored from remote 
checkpoint.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs 
train_func

tune.run(train_func)

Orchestrator running HPO 
algorithm

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

WorkerProcess
Actor: Runs 
train_func

Load checkpoint 
from cloud storage

restore



XGBoost-Ray
●  Design & Features



XGBoost-Ray
• Distributed XGBoost-Ray -  

Drop-in replacement for 
XGBoost

• Fault tolerance & Elastic 
training 

• Integration with Ray 
Datasets and Ray Tune

● https://github.com/ray-project/xgboost_ray
● https://docs.ray.io/en/latest/xgboost-ray.html

https://github.com/ray-project/xgboost_ray
https://docs.ray.io/en/latest/xgboost-ray.html


Motivation

• There are existing solutions for distributed XGBoost
• E.g. Apache Spark, Dask, Kubernetes etc

• But most existing solutions have shortcomings:
• Dynamic computation graphs
• Fault tolerance handling
• GPU support
• Integration with hyperparameter tuning libraries



XGBoost-Ray

• Ray actors for stateful training workers
• Advanced fault tolerance mechanisms
• Full (multi) GPU support
• Locality-aware distributed data loading
• Integration with Ray Tune



 Distributed XGBoost Architecture



Driver

load_data()

Worker 1 Worker 2 Worker 3 Worker 4

load_data() load_data() load_data()
Distributed
data loading

@ray.remote
Actors

Architecture



Driver

load_data()

Worker 1 Worker 2 Worker 3 Worker 4

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

Distributed
data loading

Tree-based
allreduce 
(Rabit)

Architecture



Driver

load_data()

Worker 1 Worker 2 Worker 3 Worker 4

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

Distributed
data loading

Tree-based
allreduce 
(Rabit)

Checkpoints
Eval results

Architecture



Partition A

Node 1 Node 2 Node 3 Node 4

Partition B

Partition C

Partition F

Partition D

Partition E

Partition G

Partition H

Partition A

Worker 1 Worker 2 Worker 3 Worker 4

Partition B

Partition C

Partition F

Partition D

Partition E

Partition G

Partition H

Distributed
dataframe
(e.g. Modin)

XGBoost-Ray
workers

Distributed data loading



• In distributed training, some worker nodes are bound to fail 
eventually

• Default: Simple (cold) restart from last checkpoint
• Non-elastic training (warm restart):

Only failing worker restarts
• Elastic training: Continue training with fewer workers until 

failed actor is back

Fault tolerance strategies



Worker 1

Worker 2

Worker 3

Worker 4

Training

Paused

Failed

Stopped

Loading data

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Time

Fault tolerance: Simple (cold) restart



Fault tolerance: Non-elastic training (warm restart)

Worker 1

Worker 2

Worker 3

Worker 4

Training

Paused

Failed

Stopped

Loading data

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Time



Worker 1

Worker 2

Worker 3

Worker 4

Training

Paused

Failed

Stopped

Loading data

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Time

Finishes
earlier

Fault tolerance: Elastic training



Hyperparameter tuning

Trial 1

eta: 0.1
gamma: 0.2

Trial ...

eta: 0.3
gamma: 0.1

Trial n

eta: 0.2
gamma: 0.0

W
or
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Early stopping
Searchers (e.g. BO, TPE)Report checkpoints

and results



Simple API example
from sklearn.datasets import load_breast_cancer
from xgboost import DMatrix, train

train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = DMatrix(train_x, train_y)

bst = train(
   {"objective": "binary:logistic"},
   train_set
)
bst.save_model("trained.xgb")

bst = train(

   {"objective": "binary:logistic"},

   train_set,

   ray_params=RayParams(num_actors=2)

)

bst.save_model("trained.xgb")

from xgboost_ray import RayDMatrix, RayParams, train

train_set = RayDMatrix(train_x, train_y)



Takeaways

● Distributed computing is a necessity & 
norm

● Ray’s vision: make distributed 
programming simple
○ Don’t have to be distributed systems 

expert. Just use @ray.remote :)
● Scale your ML workloads with Ray 

Libraries



Production 
RL Summit

MARCH 29 - VIRTUAL - FREE

A reinforcement learning 
event for practitioners

Ben Kasper Sumitra GaneshSergey Levine

Marc Weber Volkmar SterzingAdam Kelloway

ORGANIZED BY

Register: https://tinyurl.com/mr9rd32h



Instructor: 

Sven Mika, Lead maintainer, RLlib

HANDS-ON TUTORIAL 

Contextual Bandits & RL with RLlib

Learn how to apply cutting edge RL in production with RLlib. 

Tutorial covers: 
● Brief overview of RL concepts. 
● Train and tune contextual bandits and SlateQ algorithm
● Offline RL using cutting-edge algos
● Deploy RL models into a live service

$75 $30 (use code DCRL2022)Register: https://tinyurl.com/mr9rd32h

$75 $30 
Use code DCRL2022

Production 
RL Summit

MARCH 29 - VIRTUAL 

A reinforcement learning 
event for practitioners

ORGANIZED BY



DON’T WAIT!
CFP closes 
April 11th

Call for Papers is Now Open!
Submit your talk at 

anyscale.com/ray-summit-2022



Start learning Ray and contributing …
Getting Started:  pip install ray

Documentation (docs.ray.io) 
Quick start example, reference guides, etc

Join Ray Meetup  
Revived in Jan 2022. Next meetup March 2nd. 
Meetup each month and publish recording to the members
https://www.meetup.com/Bay-Area-Ray-Meetup/

Forums (discuss.ray.io) 
Learn / share with broader Ray community, including core team

Ray Slack 
Connect with the Ray team and community

Social Media (@raydistrtibuted, @anyscalecompute) 
Follow us on Twitter and linkedIn

GitHub 
Check out sources, file an issue, become a contributor, give us a Star :)
https://github.com/ray-project/ray

https://www.meetup.com/Bay-Area-Ray-Meetup/
https://github.com/ray-project/ray


Thank you!

Let's stay in touch:

jules@anyscale.com
https://www.linkedin.com/in/dmatrix/

@2twitme



VIDEO



https://docs.google.com/file/d/1QetZezw5nOMMnpmbpQNCnl__ytSd7oAt/preview

