Scaling Al/ML Workloads with Ray Ecosystem

Jules S. Damiji, @2twitme

Lead Developer Advocate, Ray Team @ Anyscale
Data Council, Austin, TX March 23, 2022

Sh anyscale

Overview

e Why & What Ray & Ray Ecosystem
e Ray Architecture & Components

e Ray Core APIs

e Ray Native ML Libraries

o Ray Tune, XGBoost-Ray

Demo

o Scaling ML workloads

e Q&A

Sh anyscale

Why Ray?

- Machine learning is pervasive in every
domain

DOD anyscale

Why Ray?

- Distributed machine learning is becoming
a necessity

DOD anyscale

Specialized hardware is also not enough

10,000 /,

1,000
100
©
c
= 10 e TI7 Dota 1v1
‘© e Xception
=
- 1
§ D S h2 TPU
e DeepSpeech:
o 1 eResNets / ’GPU*
g 3
= 01 e GoogleNet —
@© .
D ®AlexNet talizing and Understanding Conv Nets
[a¥ —
001 ——— == === CPU
.0001
e DQN
.00001
o%;. RAY 2013 2014 2015 2016 2017 2018 2019 % anyscale

https://openai.com/blog/ai-and-compute/

https://openai.com/blog/ai-and-compute/

No way out but to distribute!

https://openai.com/blog/ai-and-compute/

Why Ray?

- Distributed systems and programming are
notoriously hard

DOD anyscale

Existing solutions have may tradeoffs

Serverless

A @

Stitch together
existing frameworks

r 4! §8 kafka Spar

e Fo
Limitations éFlink spring O

Clean slate

01. Cloud specific 02. Stateless only

.‘w

Ease of development

03. NoGPUs/TPUs 04. Runtime limit Tensor g -GO
docker
Hard to D @
-

01. Develop 02. Deploy

03. Manage

‘GRPG:

Expensive to develop

0l1. Time 02. People

Generality

DDD anyscale

Why Ray?

- Machine learning is pervasive in every domain
- Distributed machine learning is becoming a necessity
- Distributed systems are notoriously hard
Ray’s vision:
Make distributed computing accessible to every developer

o~§) RAY DOD anyscale

The Ray Layered Cake and Ecosystem

ng Datasets i 7, Library +
ANALYTICS mic B0
raj‘/%gd workflows + ine | 280 'an XGBoost =:MODIN dass@fwsion pAsK app
g ecosystem

1 i)
rlllb SRogServe @ MARS XCQ., RS,

Universal
o§a framework
for

distributed

Universal framework for .
Distributed computing computing

Run
anywhere

°§° RAY Sh anyscale

Rich ecosystem for scaling ML workloads

Data . . . Hyper. Reinforcement
Processing Training Serving Tuning Learning
Built-in
:‘batterles Ray Core + Ray Train g Ray Serve k 'b
included” Datasets tune I
libraries

2= MODIN

O PyTorchy (geaun
RS [f " ,, oo @

DASK SELDOWN = o

Only use the libraries you need!

Companies scaling ML with Ra

2" Microsoft VISA

.b. rbesfa;runt ““-“
I I inl;";?n:ﬁonal l’FE

) shopify ==

sgedendra

& TWO SIGMA

Alibaba.com

Companies scaling ML with Ray

Data . . . H Reinforcement
: Trainin Servin RSl ;
PI'OCGSSlng g g Tunlng Learnlng

dMaZoN g ofyg o \NWD sxdendra
l bl |nterncmonal l’FE Mcglréierﬁpany

@25 Uber IkigaiLabs Elshopify RS

° https://eng.uber.com/horovod-ray/
° https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray
° https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve

DDD anyscale

https://eng.uber.com/horovod-ray/
https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray
https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve

Ray’s approach for scaling ML

(Traditional, ' Ray-ified
non-parallelized . ‘ Python
vanilla Python) (with as few code changes as possible)
Runs Same Python code Runs
on runs on laptop as on
v infinite cloud!

=D
GPUB

Ray Architecture & Components

What does Ray Cluster Looks Like ...

Head Node Worker Nodes Worker Nodes
Driver Worker Worker eee | \Worker Worker ece Worker
o Scheduler A N o Scheduler N o Schedum
3 | 3 N Y] | &)
(a'd o o
Object Store 1 N Object Store Object Stor
- 00 j ——— e Sl
\ /
\ /
Global Control Store
(ces) Unique to
Ray

Executes
actor/task

Object
Transfers

Global
Metadata

() R ()
e One per node e Centralized
Global
e Resource manager C Component
ontrOI h .
e Manages worker Store e Tracks cluster-wide
processes properties

DDD anyscale

Ray Distributed Design Patterns & APIs

Gb

Ray Basic Design Patterns

. Roy Parallel Tasks

ctions as stateless units of execution

« Functions distributed across a clusters as tasks

. Roy Obijects or Futures

tributed (immutable) Object stored in cluster

« Retrievable when available
« Enable asynchronous execution of

. R.o;/ Actors

teful service on a cluster
« Message passing and maintains state

. Patterns for Parallel Programming
2. Ray Design Patterns .
3. Ray Distributed Library Integration Patterns

Design Patterns

Elements of Reusable

Object-Oriented.Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Foreword by Grady Booch

i

£
>
o}
Q
73
O
Z
2
m
%)
=
m
<
e
=
O
b}
m
123
)
O
Z
>
=
o
O
=
3
(=
=
Z
(9]
()
m
=
m
()

anyscale

https://www.goodreads.com/book/show/85053.Patterns_for_Parallel_Programming
https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit#heading=h.crt5flperkq3
https://www.anyscale.com/blog/ray-distributed-library-patterns

&b

Python — Ray Basic Patterns

A

Function » Task >
Class » Actor >

Object » (Distributed >

immutable) Object

anyscale

Function — Task Class — Actor

@ray.remote @ray.remote(num_gpus=1)
def read_array(file): class Counter(object):
def init (self):

self.value = 0

return a def inc(self):
@ray.remote self.value += 1
def add(a, b): return self.value

return np.add(a, b)

idl = read _array.remote(filel) € =
id2 = read array.remote(file2) 1id4
id = add.remote(idl, id2) id5
sum = ray.get(id)

Counter.remote()
= c.inc.remote()
= c.inc.remote()

DDD anyscale

Blue variables are ObjectRef IDs

Task API (similar to futures)

@ray.remote Node 1 Node 2

def read _array(file): 4 N I
return a '

@ray.remote

def add(a, b): _ NG J
return np.add(a, b) ?Hl

i
1dl = read array.remote(tilel)
1d2 = read_array.remote(tilel)

id = add.remote(idl, id2)
sum = ray.get(id)

Return id1 (future) immediately,
before read_array() finishes

= e

Task API

@ray.remote
def read array(file):

return a

@ray.remote
def add(a, b):
return np.add(a, b)

idl read array.remote(filel)
1d2 read array.remote(tile?)
1d = add.remote(1idl, 1d2)

sum = ray.get(id)

Blue variables are Object IDs
(similar to futures)

Node 1 Node 2

4 N I
ﬁbﬂ ﬁb4

- N
4 4
id1 id2
Dynamic task graph:

build at runtime

DDD anyscale

Task API Blue variables are Object IDs

(similar to futures)

@ray.remote Node 1 Node 2

def read _array(file): 4 N)
return a ' '

@ray.remote 6@ 6@

def add(a, b): \ AN 5)
return np.add(a, b) ;dl id2

idl = read _array.remote(filel) . ~

id2 = read array.remote(file2) ; g‘Ode

1d = add.remote(idl, 1d2) ‘

sum = ray.get(id)

Every task scheduled,
but not finished yet

id

DOD anyscale

Task API Blue variables are Object IDs
(similar to futures)

@ray.remote Node 1 Node 2

def read_array(file): a N O :Ej ™
file2

file

id = add.remote(idl, id2)
sum

return a
@ray.remote read_array read_array
def add(a, b): \)
return np.add(a, b) \\\\ ///
idl = read _array.remote(filel)
id2 = read array.remote(file2) [\\\ |i}2°de

ray.get(id)

L

Task graph executed to sum
compute sum 5h anyscale

Distributed Immutable obiect store

Node

Worker slots

Worker
process

Worker
process

X

Y

]

Shared-memory object store

External object store (disk, S3, etc)

Spill over to
external storage

DDD anyscale

Distributed Immutable object store

Node 1

/45;;y.remote
def f():

Féturn X

@ray.remote
def g(a):

Féturn Y

f.remote()

id X
1d_Y = g.remote(1d_xX)

-

~

/
<

/

Node 2

Shared
objec/t store
/

/ id X

/\

X

N
\

\

—@

id X

/

Only X’s id (id_X) is
returned, not X’s value

/

DOD anyscale

Distributed object store

Shared
objec/t store
Node 1 Node 2 //
. . /
@y.pemote \ / id X id Yy \
def f():)(\/
return X "t

' Y|

@ray.remote Y)/
def g(a): \ /
\ /

... ,
return Y
id X I
id X f.remote() -

g.remote(1d_X) —;ﬁ id v

g(id_X) is scheduled on same node, so X is never transferred

How Raylet Schedules Tasks

Basic Ray Task Call

@ray.remote double.remote(2)

def double(x): T -
return x x 2 Python Driver Python Worker
_ Ray Core Worker » Ray Core Worker
: (2) ExecuteTask RPC
futl = double.remote(2)
assert ray.get(futl) == : (1) GetWorkerLease RPC
Raylet

Components in green boxes represent Python code. Components in white boxes are part of the Ray common
runtime written in C++. Joined boxes represent a process. Any Python driver or worker can call into the Ray C++
core worker library to execute further tasks. In this figure, all processes are running on the same machine. Ray
uses gRPC as a unified communication layer for both local and remote procedure calls.

DDD anyscale

Scaling to Multiple Nodes

1. The driver asks Raylet 1 for a worker to execute double . It has no free
workers, but Raylet 1 knows Raylet 2 has free resources, and redirects the
request to Raylet 2.

2. The driver sends ExecuteTask to the remote Python worker leased from

Raylet 2 over gRPC.
. i ° . = °
Python Driver Python Worker
Ray Core Worker #| Ray Core Worker

(3) ExecuteTask RPC

- (1) GetWorkerLease RPC

' e e _ (2) (-‘:elWorkerLease RPC succeeds

Raylet 1 Raylet 2

Node 1 Node 2

Tasks are sent to remote workers if there are no local resources available, transparently scaling Ray applications
out to multiple nodes.

DDD anyscale

Caching Scheduling Decisions

double.remote(i)
0O

futures = [double.remote(i) NG e
for i in range(10000)] Python Driver =8
ray.get(futures) — Ray Core Worker !

ExecuteTask Python Worker
[0, 2, 4, 6 ...] RPCs Ray Core Worker

- while work remaining:
GetWorkerLease RPC

Raylet

Once a scheduling decision is made by the Raylet, the worker returned can be reused for other tasks with the
same resource requirements and input dependencies. This amortizes scheduling RPC overhead when
executing many similar tasks. To avoid unfair monopolization of workers when there are multiple processes
trying to submit tasks, callers are only allowed to reuse workers within a few hundred milliseconds of initial
grant.

DDD anyscale

Ray Ecosystem

e Ray Tune
e XGBoost-Ray

Sh anyscale l l

Ray Tune - For distributed HPO

Efficient algorithms that enable running trials in parallel
Effective orchestration of distributed trials

Easy to use APIs

Interoperable with Ray Train and Ray Datasets

Saves cost (early stopping bad trials)

Minimal code changes to
work in distributed

Cutting edge settings

optimization algorithms
.I_ Multi-process/
U n e Multi-GPU

tune.run(train model)

Single Process

Compatible with ML
ecosystem

. f O %CBOOSI'

DDU anyscale

Ray tune

Search Algorithms (tune.suggest)

Tune's Search Algorithms are wrappers around open-source optimization libraries for efficient hyperparameter selection.

Each library has a specific way of defining the search space - please refer to their documentation for more details.

You can utilize these search algorithms as follows:

from ray.tune.suggest.hyperopt import HyperOptSearch
tune. run(my_function, search_alg=Hyper0OptSearch(...))

Summary

SearchAlgorithm Summary Website Code Example
Random search/grid search Random search/grid search tune_basic_example
AxSearch Bayesian/Bandit Optimization (A ax_example
BlendSearch Blended Search [Bs] blendsearch_example
cFo Cost-Frugal hyperparameter [Cfo] cfo_example

Optimization
DragonflySearch Scalable Bayesian Optimization [Dragonfly] dragonfly_example
SkoptSearch Bayesian Optimization [Scikit-Optimize] skopt_example
HyperOptSearch Tree-Parzen Estimators [HyperOpt] hyperopt_example
BayesOptSearch Bayesian Optimizati [BayesianOptimizati _example
TuneBOHB Bayesian Opt/HyperBand [BOHB] bohb_example
NevergradSearch Gradient-free Optimization [Nevergrad] nevergrad_example
OptunaSearch Optuna search algorithms [Optuna] optuna_example
ZOOptSearch Zeroth-order Optimization [ZOOpt] zoopt_example
SigOptSearch Closed source [sigOpt] sigopt_example
HEBOSearch Heteroscedastic Evolutionary [HEBO] hebo_example

Bayesian Optimization

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
#tune-search-alg

Trial Schedulers (tune.schedulers)

In Tune, some hyperparameter optimization algorithms are written as “scheduling algorithms”. These Trial Schedulers can
early terminate bad trials, pause trials, clone trials, and alter hyperparameters of a running trial.

All Trial Schedulers take in amet ric, whichis a value returned in the result dict of your Trainable and is maximized or
minimized according to mode.

tune.run(... , scheduler=Scheduler(metric="accuracy", mode="max"))

Summary

Tune includes distributed implementations of early stopping algorithms such as Median Stopping Rule, HyperBand, and
ASHA. Tune also includes a distributed implementation of Population Based Training (PBT) and Population Based Bandits
(PB2).

Tip

The easiest scheduler to start with is the ASHAS chedu Le which will aggressively terminate low-performing trials.

When using ., you may face ibility issues, as shown in the below compatibility matrix. Certain schedulers
cannot be used with Search Algorithms, and certain schedulers are require checkpointing to be implemented.

Schedulers can dynamically change trial resource requirements during tuning. This is currently implemented in
ResourceChangingScheduler, which can wrap around any other scheduler.

Scheduler Need C inti g C il Example
ASHA No Yes Link
Median Stopping Rule No Yes Link
HyperBand Yes Yes Link
BOHB Yes Only TuneBOHB Link
Population Based Training Yes Not Compatible Link
Population Based Bandits ~ Yes Not Compatible Basic Example, PPO example

https://docs.ray.io/en/latest/tune/api_docs/schedulers
html#tune-schedulers

0

anyscale

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers

Hyperparameters

Set before training
Hyperparameters

Model type and architecture
e Learning and training related
parameters

e Pipeline configurations
Number of trees, depth etc

Model
parameters Learn during training

DDD anyscale

Hyperparameter tuning

“choosing a set of optimal hyperparameters for a learning

224
55 dense dense
=4 13 13 13 degse
1/1/1 _ 55 % v 3 3 3
11|/ ' s 27 313 343 3PP s
< 384 384 256 1000
224 256 Max Max 4096 4096
96 Max pooling pooling

Stride povling

3 of 4

algorithm”

Example: what network structure is best for your binary classification problem?

How many layers? What kinds of layers? Learning rate
schedule?
Every number here is a hyperparameter!

DOD anyscale

HPO Challenges at scale

e Time Consumlnég and costly

e Use Resources PUs/CPUs) at lower costs
e Fault-tolerance and elasticity

[—— -\ [\ [\
lllll -0 1100 0= 1110 1==0
lllll -0 1000 0=0 + 1000 0=0
lllll -0 1011 1=0 100 1=0

DDD anyscale

Ray Tune - HPO algorithms

e Over 15+ algorithms natively provided or integrated
e Easy to swap out different algorithms with no code change

0] Exhaustive 02 Bayesian 03 Advanced
Search Optimization Scheduling

Sh anyscale

Exhaustive Search

e Easily parallelizable, easy to implement
e Inefficient, compute intensive

Grid Search Random Search

@) (@) @
Important parameter Important parameter

Unimportant parameter

Unimportant parameter

Sh anyscale

Bayesian optimization

Uses results from previous combinations (trials) to decide

which trial to try next

Inherently sequential
Popular libraries:

o hyperopt

o Optuna

o Scikit-optimize
o Nevergrad

1.0 ! LOIRRAIE B0 D .
X
0.8+ X x
X
X X &(;Exxxx
X— i
0.617/7 N\ H5255 X kx =
< O ': xx ;)%x”&x XX x =
0.4 4 _ x % X x:(x)§< B2 X x -
K %) %
X X X
0.2 X
X
0.0 T T ; .
0.0 0.2 0.4 0.6 0.8 1.0
X1

https://www.wikiwand.com/en/Hyperparamet

er_optimization

DDD anyscale

Advanced Scheduling - Early stopping

e Fan out parallel trials during the initial exploration phase

e Use intermediate results (epochs, trees, samples) to prune
underperforming trials, saving time and computing resources

e Median stopping, ASHA/Hyperband
e Can be combined with Bayesian Optimization (BOHB)

A

Validation
Metric (min)

Y

1
Resources per Trial max

DDD anyscale

Ray Tune - distributed HPO

from ray import tune Easily define your
trGInlng funCtlon

def train_func(config):

Head Node model = ConvNet(config)

for i in range(epochs):

, current_loss = model.train()
tune.run(train_func) tune.report(loss=current_loss)

DriverProcess

Orchestrator running HPO Just use
9 _ tune. run(/ tun.run(..)

algorithm train_func
config={“alpha”: tune.uniform(6.001

9.1)} Easily specify
num_samples=100 hyperparameter
« " ranges to search
scheduler="asha”, over

search_alg="optuna”)

DOD anyscale

Ray Tune - distributed HPO

Worker Node
Hene Lok Worker Node
DriverProcess
. Worker Node
tune.run(train_func)
) Launch| | WorkerProcess WorkerProcess
Orchestrator running HPO Actor: Runs Actor: Runs
algorithm train_ func train_func
Launch= —LaunchZ-
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs WorkerProcess WorkerProcess
train_ func train_ func Actor: Runs Actor: Runs
train_func train_func
Each actor performs one set of hyperparameter

combination evaluation (a trial)

DOD anyscale

Ray Tune - distributed HPO

Worker Node

AEael ek Worker Node
DriverProcess
. Worker Node
tune.run(train_func) .
) Report metrics/orkerProcess WorkerProcess
Orchestrator running HPO Actor: Runs Actor: RUns
algorithm train_func train_func
—Report metrics _ Report metrics
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs WorkerProcess WorkerProcess
train_ func train_ func Actor: Runs Actor: Runs
train_func train_func
Orchestrator keeps track of all the trials’

progress and metrics.

DOD anyscale

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO

algorithm
Early stop— —Continue
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Continu

Based on the metrics, the orchestrator
may stop/pause/mutate trials or launch
new trials when resources are available.

Worker Node

Worker Node
Worker Node

e WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

DOD anyscale

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO

algorithm
Launch a new trial—
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Resources are repurposed to explore
new trials.

Worker Node

Worker Node
Worker Node
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

DOD anyscale

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

—Trials are

Checkpoint

Orchestrator running HPO
algorithm
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Orchestrator also manages checkpoint state.

checkpointed to
cloud storage
Worker Node g
Worker Node
Worker Node
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

DOD anyscale

Ray Tune - distributed HPO

Head Node

DriverProcess

tune.run(train_func)

Orchestrator running HPO

algorithm
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func

Some worker process crashes.

Worker Node
Worker Node
Worker Node
WorkerProcess WorkerProcess
Actor: Runs Actor: Runs
train_func train_func
WorkerProcess WorkerProcess
Acto S Actor: Runs
train (] train_func

DOD anyscale

Load checkpoint
_from cloud storage-

Ray Tune - distributed HPO

Worker Nc
Hene Lok Worker Node
DriverProcess Worker Nod
orker Node
tune.run(train_func)
h) WorkerPrc .sS WorkerProcess
Orc gstrotor running HPO Actor: RU Actor: RUns
algorithm train_1 train_func
WorkerProcess WorkerProcess restore
Actor: Runs Actor: Runs WorkerProcess WorkerProcess
tra,’n_ func train_ func Actor: Runs Actor: Runs
train_func train_func
New actor comes up fresh and the

crashed trial is restored from remote
checkpoint.

DOD anyscale

XGBoost-Ray
e Design & Features

Sh anyscale l l

XGBoost-Ray

Distributed XGBoost-Ray -
Drop-in replacement for
XGBoost

Fault tolerance & Elastic
training

Integration with Ray
Datasets and Ray Tune

dmilc

°S» RAY
!

XGBoost [

Data shard 1

—

dmilc

XGBoost [

"

dmic

Data shard ...

Ve

A 4

XGBoost

Data shard n

Final model

e https://github.com/ray-project/xgboost_ray

e https://docs.ray.io/en/latest/xgboost-ray.html

DDD anyscale

https://github.com/ray-project/xgboost_ray
https://docs.ray.io/en/latest/xgboost-ray.html

Motivation

« There are existing solutions for distributed XGBoost
« E.g. Apache Spark, Dask, Kubernetes etc

« But most existing solutions have shortcomings:
« Dynamic computation graphs
« Fault tolerance handling
+ GPU support
 Integration with hyperparameter tuning libraries

DOD anyscale

XGBoost-Ray

Ray actors for stateful training workers
Advanced fault tolerance mechanisms
Full (multi) GPU support

Locality-aware distributed data loading
Integration with Ray Tune

DOD anyscale

Distributed XGBoost Architecture

Data Shard 1

s o o e — _
i m——
_ — - Worker 1 Mg,
- K <
4 K
/ tree-based allreduce _
/ .
* \
tree-based allreduce |
Tracker e — _ (RABIT)
1 TA Data Shard 3 |< - — Training
P | Dataset
\ ——— - Worker3
\ T
X :
N /
~ | Worker 2 |<«——tree-based allreduce /-'
Data Shard 2 |« - — .. _ o s

5h anyscale

Architecture

@ray.remote
Actors \ Driver
Worker 1 Worke/rz/\wker 3 Worker 4

Si;fg?g;il?ng [load_data() J [load_data()] [load_data()] [load_data()]

DOD anyscale

Architecture

Driver
Worker 1 rker 2 Worker 4
Distributed | | | [|]
data loading oad V oad_data() oad data() oad_data()
Tree-based / \
allreduce xgb.train() xgb.train() xgb.train() xgb.train()]

(Rabit)

DOD anyscale

Architecture

[Driver
Worker 1 Work}/ Worker 3 Worker 4

Distributed
data Iooding [load_data() J d _data()] load_data()] [load_data()]

Checkpoints

Eval results
Tree-based
allreduce [xgb.train() }—{ xgb.train() }—»[xgb.train() }—{ xgb.train()]
(Rabit)

DOD anyscale

Distributed data loading

Distributed
dataframe
(e.g. Modin)

XGBoost-Ray
workers

Node 1

[Partition A]

Partition B]

Worker 1

[Partition A J

Partition B]

Node 2

[Partition C]

Worker 2

[Partition C]

[Partition F

Node 3

Node 4

Partition D

[Partition G]

Partition E

[Partition H]

Partition F

orker 3

Worker 4

[Partition D]

[Partition G]

Partition E]

[Partition H]

DOD anyscale

Fault tolerance strategies

In distributed training, some worker nodes are bound to fail
eventually
: Simple (cold) restart from last checkpoint
training (warm restart):
Only failing worker restarts
Elastic training: Continue training with fewer workers until
failed actor is back

DOD anyscale

Fault tolerance: Simple (cold) restart

C] Training - Failed
C] Paused C] Stopped

Worker 1 Worker 1 Worker 1 Worker 1

—
()
g J
()

Worker 1

Worker 2 Worker 2 Worker 2 Worker 2

N
J
)
J
N)
—
()
& J
(N\

Worker 2

Worker 3 Worker 3 Worker 3

(N\
g J/
()
- J
()
& J
(N\

Worker 3

Worker 4 Worker 4 Worker 4 Worker 4

(N\
g J/
()
- J
)
—
()
& J
(N\

Worker 4

DOD anyscale

Fault tolerance: Non-elastic training (warm restart)

C] Training - Failed
C] Paused C] Stopped

Worker 1 Worker 1 Worker 1 Worker 1 Worker 1

—
()
- J
(N\
- J

Worker 2 Worker 2 Worker 2

-
(.
(
-
N)
—
()
(. J
(N\
- J

Worker 2 Worker 2

()
& J
4 N\
& J
4 N\
- J
4 N\
& J

Worker 3 Worker 3 Worker 3 Worker 3

(N\
g J/
()
- J
)

Worker 4 Worker 4 Worker 4

—
()
- J
(N\
- J

Worker 4 Worker 4

DOD anyscale

Fault tolerance: Elastic training

C] Training - Failed
C] Paused C] Stopped

Time
Worker 1 Worker 1 [Worker 1 1 Worker 1 Worker 1
Worker 2 Worker 2 [Worker 2 1 Worker 2 Worker 2 ..
L) L) L) L) Finishes
earlier

Worker 3 Worker 3 Worker 3 Worker 3

(N\
g J/
()
- J
()
& J
(N\
. J

Worker 4 Worker 4 Worker 4 Worker 4 Worker 4

(N\
g J/
()
- J
)
—
()
- J
(N\
. J

DOD anyscale

Hyperparameter tuning

BN

Report checkpoints
and resu|ts/
/

Trial 1
eta: 0.1
gamma:

| | ! |
~— (q\]

o) o)

. -

(@) (@)

= <

fune

Trial ...

eta: 0.3
gamma: 0.1

' | | |
— N : e
gl 8]lg| ¢
o O [—_
= || 2| 2|2

Early stopping
~~ Searchers (e.g. BO, TPE)

T~

0

Trial n
eta: 0.2
gamma: 0.0
| } | |
~ (q\]
o) o)
. =
(@) (@)
= <

anyscale

Simple APl example

from sklearn.datasets import load_breast_cancer
from xgboost_ray import RayDMatrix, RayParams, train

train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = RayDMatrix(train_x, train_y)

bst = train(
{"objective": "binary:logistic"},
train_set,
ray_params=RayParams(num_actors=2)

)

bst.save_model("trained.xgb")

DDD anyscale

Takeaways

e Distributed computing is a necessity &
norm

e Ray’s vision: make distributed

— programming simple
o Don’'t have to be distributed systems

expert. Just use

e Scale your ML workloads with Ray

Libraries

Sh anyscale

MARCH 29 - VIRTUAL - FREE

*
Production =

RL Summit

A reinforcement learning
event for practitioners

Register: https://tinyurl.com/mrgrd32h

s

ORGANIZED BY Sh anyscale

Ben Kasper

" RIOT

w GAMES

Adam Kelloway Marc Weber

5 oW SIEMENS

Sumitra Ganesh

JPMorgan

Volkmar Sterzing

SIEMENS

MARCH 29 - VIRTUAL

*
Productlon

RL 5umm|t

A reinforcement learning

event for practitioners

Register: https://tinyurl.com/mr9rd32h

Use code DCRL2022

ORGANIZED BY Sh anyscale

HANDS-ON TUTORIAL
Contextual Bandits & RL with RLLib

Learn how to apply cutting edge RL in production with RLLib.

Tutorial covers:

Brief overview of RL concepts.

Train and tune contextual bandits and SlateQ algorithm
Offline RL using cutting-edge algos

Deploy RL models into a live service

S7#5 $30 (use code DCRL2022)

Instructor:

Sven Mika, Lead maintainer, RLLlib

o§>RAv SUMMIT 2021 « JUNE 22 - 24 RAY SUMMIT 2022

AUGUST 23 & 24TH | SAN FRANCISCO

Call for Papers is Now Open!

Submit your talk at
anyscale.com/ray-summit-2022

Don'r WAITI

CFP closeg
April 11th

ou © niscale

Start learning Ray and contributing ...

Getting Started: pip install ray

Documentation (docs.ray.io)
Quick start example, reference guides, etc

Join Ray Meetup

Revived in Jan 2022. Next meetup March 2nd.

Meetup each month and publish recording to the members
https://www.meetup.com/Bay-Area-Ray-Meetup/

Forums (discuss.ray.io)
Learn / share with broader Ray community, including core team

Ray Slack
Connect with the Ray team and community

Social Media (@raydistrtibuted, @anyscalecompute)
Follow us on Twitter and linkedIn

GitHub
Check out sources, file an issue, become a contributor, give us a Star:)
https://github.com/ray-project/ray

https://www.meetup.com/Bay-Area-Ray-Meetup/
https://github.com/ray-project/ray

Thank you!

Let's stay in touch:

jules@anyscale.com
https://www.linkedin.com/in/dmatrix/

W @2twitme

Sh anyscale

VIDEO

Sh anyscale

https://docs.google.com/file/d/1QetZezw5nOMMnpmbpQNCnl__ytSd7oAt/preview

