
Scaling AI/ML Workloads with Ray Ecosystem

Jules S. Damji, @2twitme
Lead Developer Advocate, Ray Team @ Anyscale
Data Council, Austin, TX March 23, 2022

Overview
● Why & What Ray & Ray Ecosystem
● Ray Architecture & Components
● Ray Core APIs
● Ray Native ML Libraries

○ Ray Tune, XGBoost-Ray
● Demo

○ Scaling ML workloads
● Q & A

- Machine learning is pervasive in every
domain

- Distributed machine learning is becoming a
necessity

- Distributed systems is notoriously hard

Why Ray?

- Machine learning is pervasive in every
domain

- Distributed machine learning is becoming
a necessity

- Distributed systems is notoriously hard

Why Ray?

35x every 18 months

2020

GPT-3

Specialized hardware is also not enough

CPU

https://openai.com/blog/ai-and-compute/

GPU*
TPU
*

https://openai.com/blog/ai-and-compute/

35x every 18 months

2020

GPT-3

Specialized hardware is also not enough

Moore’s Law (2x every 18 months)
CPU

https://openai.com/blog/ai-and-compute/

GPU*
TPU
*

No way out but to distribute!

https://openai.com/blog/ai-and-compute/

- Machine learning is pervasive in every
domain

- Distributed machine learning is becoming a
necessity

- Distributed systems and programming are
notoriously hard

Why Ray?

Existing solutions have may tradeoffs

Generality

Ea
se

 o
f d

ev
el

op
m

en
t

- Machine learning is pervasive in every domain
- Distributed machine learning is becoming a necessity
- Distributed systems are notoriously hard

Ray’s vision:
Make distributed computing accessible to every developer

Why Ray?

The Ray Layered Cake and Ecosystem
Datasets

Workflows

Run
anywhere

Universal
framework
for
distributed
computing

Library +
app
ecosystem

Rich ecosystem for scaling ML workloads

Ray Core
/ Datasets

Model
Serving

Data
Processing Training Serving

Ray Core +
Datasets

Reinforcement
Learning

Hyper.
Tuning

** a small subset of the Ray ecosystem in MLOnly use the libraries you need!

Ray Train
Built-in
“batteries
included”
libraries

Companies scaling ML with Ray

Ray Core
/ Datasets

Model
Serving

Data
Processing Training Serving Reinforcement

Learning
Hyper.
Tuning

Companies scaling ML with Ray

● https://eng.uber.com/horovod-ray/
● https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray
● https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve

https://eng.uber.com/horovod-ray/
https://www.anyscale.com/blog/wildlife-studios-serves-in-game-offers-3x-faster-at-1-10th-the-cost-with-ray
https://www.ikigailabs.com/blog/how-ikigai-labs-serves-interactive-ai-workflows-at-scale-using-ray-serve

Ray’s approach for scaling ML

(with as few code changes as possible)

Runs
on

CPU CPU CPU CPU

GPU A GPU B GPU B GPU B

Runs
on

Same Python code
runs on laptop as
infinite cloud!

(Traditional,
non-parallelized
vanilla Python)

Ray-ified
Python

Ray Architecture & Components

What does Ray Cluster Looks Like …

 Driver Worker

Global Control Store
(GCS)

 Scheduler

 Object Store
Ra

yl
et

 Worker Worker

 Scheduler

 Object Store
Ra

yl
et

 Worker Worker

 Scheduler

 Object Store
Ra

yl
et

Unique to
Ray

… …

Head Node Worker Nodes Worker Nodes

● One per node
● Resource manager
● Manages worker

processes

● Centralized
Component

● Tracks cluster-wide
properties

● Executes
actor/task

Ray Distributed Design Patterns & APIs

Ray Basic Design Patterns

• Ray Parallel Tasks
• Functions as stateless units of execution
• Functions distributed across a clusters as tasks

• Ray Objects or Futures
• Distributed (immutable) Object stored in cluster
• Retrievable when available
• Enable asynchronous execution of

• Ray Actors
• Stateful service on a cluster
• Message passing and maintains state

1. Patterns for Parallel Programming
2. Ray Design Patterns
3. Ray Distributed Library Integration Patterns

https://www.goodreads.com/book/show/85053.Patterns_for_Parallel_Programming
https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit#heading=h.crt5flperkq3
https://www.anyscale.com/blog/ray-distributed-library-patterns

Python → Ray Basic Patterns

Function

Class

Object

Task

Actor

(Distributed
immutable) Object

Node

Node

Node

Function → Task Class → Actor
@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

@ray.remote(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def inc(self):
 self.value += 1
 return self.value

c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()

Task API
@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

Blue variables are ObjectRef IDs
(similar to futures)

read_array

id1

Return id1 (future) immediately,
before read_array() finishes

Task API
@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

read_array

id2

Dynamic task graph:
build at runtime

Blue variables are Object IDs
(similar to futures)

Task API
@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1 file2

Node 1 Node 2

read_array

id1

read_array

id2

add

id

Node
3

Every task scheduled,
but not finished yet

Blue variables are Object IDs
(similar to futures)

Task API
@ray.remote
def read_array(file):
 # read ndarray “a”
 # from “file”
 return a

@ray.remote
def add(a, b):
 return np.add(a, b)

id1 = read_array.remote(file1)
id2 = read_array.remote(file2)
id = add.remote(id1, id2)
sum = ray.get(id)

file1

Node 1 Node 2

Node
3

read_array

file2

read_array

add

sumTask graph executed to
compute sum

Blue variables are Object IDs
(similar to futures)

Distributed Immutable object store

Worker
 process

Worker
 process ….

X Y Z

Spill over to
external storage

Distributed Immutable object store

@ray.remote
def f():
 …
 return X

@ray.remote
def g(a):
 …
 return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

id_X

Node 2

f()

X

id_X

Only X’s id (id_X) is
returned, not X’s value

.. ..

Shared
object store

Distributed object store

@ray.remote
def f():
 …
 return X

@ray.remote
def g(a):
 …
 return Y

id_X = f.remote()
id_Y = g.remote(id_X)

Node 1

g(id_X)

X

id_X

id_X

Node 2

Y

id_Y

id_Y

g(id_X) is scheduled on same node, so X is never transferred

…

Shared
object store

How Raylet Schedules Tasks

Scaling to Multiple Nodes

Caching Scheduling Decisions

futures = [double.remote(i)
for i in range(10000)]
ray.get(futures)

[0, 2, 4, 6 …]

Ray Ecosystem
● Ray Tune
● XGBoost-Ray

Ray Tune

● Efficient algorithms that enable running trials in parallel
● Effective orchestration of distributed trials
● Easy to use APIs
● Interoperable with Ray Train and Ray Datasets
● Saves cost (early stopping bad trials)

Ray Tune - For distributed HPO

Cutting edge
optimization algorithms

Minimal code changes to
work in distributed

settings

Compatible with ML
ecosystem

Ray

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
#tune-search-alg

https://docs.ray.io/en/latest/tune/api_docs/schedulers.
html#tune-schedulers

https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/suggestion.html#tune-search-alg
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers
https://docs.ray.io/en/latest/tune/api_docs/schedulers.html#tune-schedulers

Hyperparameters

Model
parameters

● Model type and architecture
● Learning and training related

parameters
● Pipeline configurations
● Number of trees, depth etc

Set before training

Learn during training

Hyperparameters

Hyperparameter tuning
“choosing a set of optimal hyperparameters for a learning algorithm”

How many layers? What kinds of layers? Learning rate
schedule?

Every number here is a hyperparameter!

Example: what network structure is best for your binary classification problem?

HPO Challenges at scale

● Time consuming and costly
● Use Resources (GPUs/CPUs) at lower costs
● Fault-tolerance and elasticity

+$$$

01 02 03Exhaustive
Search

Bayesian
Optimization

Advanced
Scheduling

● Over 15+ algorithms natively provided or integrated
● Easy to swap out different algorithms with no code change

Ray Tune - HPO algorithms

● Easily parallelizable, easy to implement
● Inefficient, compute intensive

Exhaustive Search

● Uses results from previous combinations (trials) to decide
which trial to try next

Bayesian optimization

https://www.wikiwand.com/en/Hyperparamet
er_optimization

● Inherently sequential
● Popular libraries:

○ hyperopt
○ Optuna
○ Scikit-optimize
○ Nevergrad

● Fan out parallel trials during the initial exploration phase
● Use intermediate results (epochs, trees, samples) to prune

underperforming trials, saving time and computing resources

Advanced Scheduling - Early stopping

● Median stopping, ASHA/Hyperband
● Can be combined with Bayesian Optimization (BOHB)

Ray Tune - distributed HPO

Head Node

DriverProcess
tune.run(train_func)

Orchestrator running HPO
algorithm

from ray import tune

def train_func(config):
 model = ConvNet(config)
 for i in range(epochs):
 current_loss = model.train()
 tune.report(loss=current_loss)

tune.run(
 train_func,
 config={“alpha”: tune.uniform(0.001,
0.1)},
 num_samples=100,
 scheduler=“asha”,
 search_alg=”optuna”)

Easily specify
hyperparameter
ranges to search
over

Easily define your
training function

Just use
tun.run(..)

Worker Node

Worker Node

Ray Tune - distributed HPO

Each actor performs one set of hyperparameter
combination evaluation (a trial)

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO
algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Launch Launch

Launch

Worker Node

Worker Node

Ray Tune - distributed HPO

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO
algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Report metrics Report metrics

Report metrics

Orchestrator keeps track of all the trials’
progress and metrics.

Worker Node

Worker Node

Ray Tune - distributed HPO

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO
algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Early stop Continue

Continue

Based on the metrics, the orchestrator
may stop/pause/mutate trials or launch
new trials when resources are available.

Worker Node

Worker Node

Ray Tune - distributed HPO

Resources are repurposed to explore
new trials.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO
algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Launch a new trial

Worker Node

Worker Node

Ray Tune - distributed HPO

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO
algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Trials are
checkpointed to
cloud storage

Orchestrator also manages checkpoint state.

Checkpoint

Worker Node

Worker Node

Ray Tune - distributed HPO

Some worker process crashes.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO
algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Worker Node

Worker Node

Ray Tune - distributed HPO

New actor comes up fresh and the
crashed trial is restored from remote
checkpoint.

Head Node

Worker Node
DriverProcess

WorkerProcess
Actor: Runs
train_func

tune.run(train_func)

Orchestrator running HPO
algorithm

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

WorkerProcess
Actor: Runs
train_func

Load checkpoint
from cloud storage

restore

XGBoost-Ray
● Design & Features

XGBoost-Ray
• Distributed XGBoost-Ray -

Drop-in replacement for
XGBoost

• Fault tolerance & Elastic
training

• Integration with Ray
Datasets and Ray Tune

● https://github.com/ray-project/xgboost_ray
● https://docs.ray.io/en/latest/xgboost-ray.html

https://github.com/ray-project/xgboost_ray
https://docs.ray.io/en/latest/xgboost-ray.html

Motivation

• There are existing solutions for distributed XGBoost
• E.g. Apache Spark, Dask, Kubernetes etc

• But most existing solutions have shortcomings:
• Dynamic computation graphs
• Fault tolerance handling
• GPU support
• Integration with hyperparameter tuning libraries

XGBoost-Ray

• Ray actors for stateful training workers
• Advanced fault tolerance mechanisms
• Full (multi) GPU support
• Locality-aware distributed data loading
• Integration with Ray Tune

 Distributed XGBoost Architecture

Driver

load_data()

Worker 1 Worker 2 Worker 3 Worker 4

load_data() load_data() load_data()
Distributed
data loading

@ray.remote
Actors

Architecture

Driver

load_data()

Worker 1 Worker 2 Worker 3 Worker 4

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

Distributed
data loading

Tree-based
allreduce
(Rabit)

Architecture

Driver

load_data()

Worker 1 Worker 2 Worker 3 Worker 4

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

load_data()

xgb.train()

Distributed
data loading

Tree-based
allreduce
(Rabit)

Checkpoints
Eval results

Architecture

Partition A

Node 1 Node 2 Node 3 Node 4

Partition B

Partition C

Partition F

Partition D

Partition E

Partition G

Partition H

Partition A

Worker 1 Worker 2 Worker 3 Worker 4

Partition B

Partition C

Partition F

Partition D

Partition E

Partition G

Partition H

Distributed
dataframe
(e.g. Modin)

XGBoost-Ray
workers

Distributed data loading

• In distributed training, some worker nodes are bound to fail
eventually

• Default: Simple (cold) restart from last checkpoint
• Non-elastic training (warm restart):

Only failing worker restarts
• Elastic training: Continue training with fewer workers until

failed actor is back

Fault tolerance strategies

Worker 1

Worker 2

Worker 3

Worker 4

Training

Paused

Failed

Stopped

Loading data

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Time

Fault tolerance: Simple (cold) restart

Fault tolerance: Non-elastic training (warm restart)

Worker 1

Worker 2

Worker 3

Worker 4

Training

Paused

Failed

Stopped

Loading data

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Time

Worker 1

Worker 2

Worker 3

Worker 4

Training

Paused

Failed

Stopped

Loading data

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Worker 1

Worker 2

Worker 3

Worker 4

Time

Finishes
earlier

Fault tolerance: Elastic training

Hyperparameter tuning

Trial 1

eta: 0.1
gamma: 0.2

Trial ...

eta: 0.3
gamma: 0.1

Trial n

eta: 0.2
gamma: 0.0

W
or

ke
r 1

W
or

ke
r 2

W
or

ke
r .

..

W
or

ke
r m

W
or

ke
r 1

W
or

ke
r 2

W
or

ke
r .

..

W
or

ke
r m

W
or

ke
r 1

W
or

ke
r 2

W
or

ke
r .

..

W
or

ke
r m

Early stopping
Searchers (e.g. BO, TPE)Report checkpoints

and results

Simple API example
from sklearn.datasets import load_breast_cancer
from xgboost import DMatrix, train

train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = DMatrix(train_x, train_y)

bst = train(
 {"objective": "binary:logistic"},
 train_set
)
bst.save_model("trained.xgb")

bst = train(

 {"objective": "binary:logistic"},

 train_set,

 ray_params=RayParams(num_actors=2)

)

bst.save_model("trained.xgb")

from xgboost_ray import RayDMatrix, RayParams, train

train_set = RayDMatrix(train_x, train_y)

Takeaways

● Distributed computing is a necessity &
norm

● Ray’s vision: make distributed
programming simple
○ Don’t have to be distributed systems

expert. Just use @ray.remote :)
● Scale your ML workloads with Ray

Libraries

Production
RL Summit

MARCH 29 - VIRTUAL - FREE

A reinforcement learning
event for practitioners

Ben Kasper Sumitra GaneshSergey Levine

Marc Weber Volkmar SterzingAdam Kelloway

ORGANIZED BY

Register: https://tinyurl.com/mr9rd32h

Instructor:

Sven Mika, Lead maintainer, RLlib

HANDS-ON TUTORIAL

Contextual Bandits & RL with RLlib

Learn how to apply cutting edge RL in production with RLlib.

Tutorial covers:
● Brief overview of RL concepts.
● Train and tune contextual bandits and SlateQ algorithm
● Offline RL using cutting-edge algos
● Deploy RL models into a live service

$75 $30 (use code DCRL2022)Register: https://tinyurl.com/mr9rd32h

$75 $30
Use code DCRL2022

Production
RL Summit

MARCH 29 - VIRTUAL

A reinforcement learning
event for practitioners

ORGANIZED BY

DON’T WAIT!
CFP closes
April 11th

Call for Papers is Now Open!
Submit your talk at

anyscale.com/ray-summit-2022

Start learning Ray and contributing …
Getting Started: pip install ray

Documentation (docs.ray.io)
Quick start example, reference guides, etc

Join Ray Meetup
Revived in Jan 2022. Next meetup March 2nd.
Meetup each month and publish recording to the members
https://www.meetup.com/Bay-Area-Ray-Meetup/

Forums (discuss.ray.io)
Learn / share with broader Ray community, including core team

Ray Slack
Connect with the Ray team and community

Social Media (@raydistrtibuted, @anyscalecompute)
Follow us on Twitter and linkedIn

GitHub
Check out sources, file an issue, become a contributor, give us a Star :)
https://github.com/ray-project/ray

https://www.meetup.com/Bay-Area-Ray-Meetup/
https://github.com/ray-project/ray

Thank you!

Let's stay in touch:

jules@anyscale.com
https://www.linkedin.com/in/dmatrix/

@2twitme

VIDEO

https://docs.google.com/file/d/1QetZezw5nOMMnpmbpQNCnl__ytSd7oAt/preview

