
dbt next
(6 aug 2020)

New in Marian Anderson (v0.18.0)

● Advanced model selectors

● “Slim CI”: Deferred runs of changed models only

● More extensible framework for cross-database macros

Check out:

● changelog

● migration guide

● milestone

https://github.com/fishtown-analytics/dbt/blob/dev/marian-anderson/CHANGELOG.md
https://next.docs.getdbt.com/docs/guides/migration-guide/upgrading-to-0-18-0/
https://github.com/fishtown-analytics/dbt/milestone/58

$ dbt run

$ dbt run -m tag:just_the_ones_i_want

As dbt projects get bigger...

We need more power!

● methods: config, test_type, test_name, package

● intersections (“this AND that”)

● nth-degree parent/child

● version-controlled YML selectors

New node selection

list all my incremental models
$ dbt ls -m config.materialized:incremental

run only incremental models defined in the snowplow package
$ dbt run -m config.materialized:incremental,package:snowplow

run only incremental models defined in the snowplow package, and
their immediate offspring
$ dbt run -m config.materialized:incremental+1,package:snowplow+1

execute my “severe” tests downstream of a source
$ dbt test -m source:stripe+ --exclude config.severity:warn

New node selection

dbt Cloud can “build on PR,” via GitHub integration, into a scratch schema.

What if it could run only the models it has to?

● How do we know which models changed? Compare

● What about their parents? Defer

“Slim CI”

$ dbt run -m state:modified+ --defer --state path/to/artifacts

Cross-database functionality

-- postgres
extract(epoch from timestamp_a - timestamp_b)/3600

-- redshift
datediff(hour, timestamp_a, timestamp_b)

-- bigquery
timestamp_diff(timestamp_b, timestamp_a, hour)

These all do the same thing:

{% macro spark__datediff(first_date, second_date, datepart) %} … {% endmacro %}

“Dispatch” macros
{% macro datediff(first_date, second_date, datepart) %}

{{ adapter.dispatch(macro_name = 'datediff', packages = …)
(first_date, second_date, datepart) }}

{% endmacro %}

{% macro postgres__datediff(first_date, second_date, datepart) %} … {% endmacro %}

{% macro redshift__datediff(first_date, second_date, datepart) %} … {% endmacro %}

{% macro bigquery__datediff(first_date, second_date, datepart) %} … {% endmacro %}

And someone else can define:

Why now?

● Road to v1.0.0

● Plugins!

https://github.com/fishtown-analytics/dbt/labels/1.0.0

Adapters as plugins

Since Stephen Girard (v0.13.0, March 2019), dbt has supported external adapter

plugins as a way to port its functionality to new databases.

Core plugins Public plugins Private plugins

Fishtown Fishtown Community ???

Snowflake
BigQuery
Postgres
Redshift

Spark
Presto

SQLServer,
MSSQL, Azure
DW, Synapse
Athena
Oracle
Exasol

Netezza
Vertica
IBM DB2
Hive
...

What does that get us?

● dbt (and its viewpoint) at more & more organizations

● More robust open-source community

● Functionality we could never have on the “core four” analytical databases. For

instance, genuinely different tooling for real-time or operational analytics:

● Spark structured streaming

● Materialize.io

dbt plugins → dbt Cloud: Q4 2020

https://materialize.io/docs/overview/architecture/

