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Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure i1s vast and complex.

“We recognize that a mature system might end up being (at most)
nachine learning code and (at least) 95% glue code” - Sculley, NIPS
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Feature Engineering

« 60 - 70%
« Good data with okay/simple model

« Continuously arriving data



Your typical Data warehouse
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An example

e Restaurant recommendations

e Total visits to restaurants of the same cuisine
last month

e Average rating of the restaurant last

« They are all aggregations




An example

Predict Tikelihood of you liking a particular Indian restaurant
e Total visits to restaurants of the same cuisine last month

e COUNT(visit_id) GROUP BY cuisine WINDOW 1lmonth

o« checkin_stream(kafka) + checkin_log (hive)
e Average rating of the restaurant

e AVG(rating) GROUP BY restaurant_id WINDOW lyr

o« ratings_db_snapshot(Chive) +

ratings_db_mutations(kafka/debezium)



Feature Set Example

ratings_features = GroupByI
sources=Ev —

ent_stream="restaurant_check_in_stream",

event_log table="core_data.restaurant_check_ins

select=Select(
restaurant="1id_restaurant",
rating="CAST(rating as DOUBLE) - 2.5",

raeving for this cuisine”,
operation=AVG,

inputColumn="rating",
windows=[Window(len

timeUnit=TimeUnit.YEARS)]



Feature Set Example

napshot_table="core_data.ratings",
change_topic="checkin_stream",

select=Select(
user="1id_user",

restaurant="1id_restaurant"”,
cuisine="restaurant_cuisine",
rating="rating",

)s

num_checkins=Aggregation(
documen loo= of check-ins",

operation=COUNT,
windows=[Window(length=3 imeUnit=TimeUnit.DAYS)]




Feature Set Example @

feature_set = LeftOuterJoin(
left=HiveEventSource(
table="core_data.ratings",
query=Query(
select=Select(
user="1d_user",
restaurant="1d_restaurant”,
cuisine="restaurant_cuisine",
rating="rating", # <« Label. irrelevant for backfills

),

), — .

cTight=[check_in_features, ratings_features]|,>
)
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Aggregations + Temporal Join



Feature Serving for inference

what 1s the value of these feature aggregates now?



Feature Serving

 Latency
« Optimized for point queries
« Freshness vs latency

e Service Events and DB Mutations

e Batch correction



Real-time features

« Fact features: Fact log (hdfs) + Fact Stream (kafka)

e Service Events

« Dim features: Dim snapshot (hdfs) + Change Stream (kafka)

 Database snapshots
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Computed Vs. Logged

Easier to implement

Fully consistent

Horrible iteration time

Computed + Consistent is our goal



Feature Computation for training

what are the exact feature values at the
points-of-interest in history?



User

sarah

anusha

restaurant

Zeni’s

La mar

Chaat

Example

Query Log

timestamp

2019-09-13 17:31
2019-09-14 17:40

2019-09-15 17:02

Aggregated Features
visits avg rating
Tast month Tast year




Aggregation Math



Aggregations

e Commutative:

e Associative:

e Reversible: (a + b) - a

s Abelian Group

— SUM

a+b=Db+ a

(a + b)) + c =

b

a + (b + ©)



Aggregations — AVG

« One not-so-clever trick
« Operate on “Intermediate Representation” / IR
e Factors 1nto (sum, count)

* Finalized by a division: (sum/count)



Aggregations

« Constant memory / Bounded IR

« Two classes of aggregations

« Sum, Avg, Count etc.,
« Reversible / Abelian Groups
« Min, Max, Approx Unique, most sketches etc.,

« Non-Reversible / Commutative Monoids / Non-Groups



Incremental windowing - with reversibility

Visits — check-in stream of a user
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Incremental windowing - with reversibility
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wWindowing - w/o reversibility

* Time: O(NA2) vs O(NLOgN)

« Space: N vs 2N memory

Groups Non-Groups
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Reversibility - uUnpacking Change data

« Deletion 1s a reversal
« Update is a delete followed by an insert

« Example:

« Review 1s taken down
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Feature Backfill

« TiIme-series join with aggregations

« Left Queries (Key, timestamp)
 Right Events (Key, timestamp, payload)
« Output Features (Key, timestamp, aggregated)

« Aggregation and join is fused

« Raw data >> query log



Naive approach

result = {}
for (key, query_times, events) in join_result:
result[key] = [None] * query_times
for (i, query_time) in enumerate(query_times):
for event 1n events:
if (query_time - window) < event.time < query_time:
result[key][i] = updateevent.payload, result[key][i]



Optimization - 1: Loop ordering

result = {}
for (key, query times, events) in join_result:

resultlkeyd—=—fNonelx query_times

for event 1n events: # pass through events only once

| focqueries) search + O(candidates) updates

for (i, query_time) in enumerate(query_times):
if (query_time - window) < event.time < query_time:
result[key][i] = update(event.payload, result[key][i])



Optimization - 2 : Bilnhary search

result = {}
for (key, query times, events) in join_result:
result[key] = [None] * query_times
for event 1n events:
## 0(log-queries) search + 0(candidatesS=tipcates
for 1 in rangef(bséarch(event.time, query_times),
bsearch(event.time + window, query times)?)~
result[key][i] = update(event.payload, result[key][i])



Tree Merge

Incoming Event (ts, payload) Event span

Query timestamps




Optimization - 3 : Tiling

result = {}
for (key, query_times, events) in join_result:
result[key] = make_tiles(query_times)
for event in events:
# 0(log-queries)—search + 0(log-candidates) updates
for tile in” tile_range(event.time, event.time + window, query_ times):
result[key][tile] = update(event.payload, result[key][tile])

# Q(guertes) Merges
result[key] = collapse_tiles(result[key])



Feature Backfill - Topology
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