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“We recognize that a mature system might end up being (at most) 
5% machine learning code and (at least) 95% glue code” – Sculley, NIPS 2015



• Enable DS 

• Best Practices

• Efficient

• Save time

Goals



• 60 – 70%

• Good data with okay/simple model

• Continuously arriving data

Feature Engineering



Your typical Data Warehouse
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An example

● Restaurant recommendations

● Total visits to restaurants of the same cuisine 

last month

● Average rating of the restaurant last year

● They are all aggregations



An example

● Predict likelihood of you liking a particular Indian restaurant

● Total visits to restaurants of the same cuisine last month

● COUNT(visit_id) GROUP BY cuisine WINDOW 1month

● checkin_stream(kafka) + checkin_log (hive)

● Average rating of the restaurant

● AVG(rating) GROUP BY restaurant_id WINDOW 1yr

● ratings_db_snapshot(hive) + 

ratings_db_mutations(kafka/debezium)

They are all aggregations



Feature Set Example



Feature Set Example



Feature Set Example
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Feature Serving for inference

What is the value of these feature aggregates now?



Feature Serving

• Latency

• Optimized for point queries

• Freshness vs latency

• Service Events and DB Mutations

• Batch correction



Real-time features

• Fact features:  Fact log (hdfs) + Fact Stream (kafka) 

• Service Events

• Dim features:  Dim snapshot (hdfs) + Change Stream (kafka) 

• Database snapshots
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Computed Vs. Logged

• Easier to implement 

• Fully consistent 

• Horrible iteration time

• Computed + Consistent is our goal



Feature Computation for training

What are the exact feature values at the 
points-of-interest in history? 



User restaurant timestamp

sarah Zeni’s 2019-09-13 17:31

eve La mar 2019-09-14 17:40

anusha Chaat 2019-09-15 17:02

Example

visits

last month

avg rating

last year  

5 4

20 4

6 2

Query Log Aggregated Features



Aggregation Math



Aggregations – SUM

• Commutative: a + b = b + a

• Associative: (a + b) + c = a  + (b + c)

• Reversible: (a + b) – a = b

• Abelian Group



Aggregations – AVG

• One not-so-clever trick

• Operate on “Intermediate Representation” / IR

• Factors into (sum, count)

• Finalized by a division: (sum/count)



Aggregations 

• Constant memory / Bounded IR

• Two classes of aggregations

• Sum, Avg, Count etc., 

• Reversible / Abelian Groups 

• Min, Max, Approx Unique, most sketches etc., 

• Non-Reversible / Commutative Monoids / Non-Groups



Incremental Windowing – with reversibility 

0 1 .. .. 0 1 0 ..

Visits – check-in stream of a user
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In the last year
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Incremental Windowing – with reversibility 
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Windowing – w/o reversibility

• Time: O(N^2) vs O(NLogN)

• Space: N vs 2N memory

Groups Non-Groups

Un-Windowed No-Reversal No-Reversal

Windowed Reversal Tree



Reversibility - Unpacking Change data

• Deletion is a reversal

• Update is a delete followed by an insert

• Example:

• Review is taken down



User restaurant timestamp

sarah Zeni’s 2019-09-13 17:31

eve La mar 2019-09-14 17:40

anusha Chaat 2019-09-15 17:02

Example

visits

last month

avg rating

last year  

5 4

20 4

6 2

Query Log Aggregated Features



Feature Backfill

• Time-series join with aggregations

• Left         Queries      (Key, timestamp)

• Right       Events        (Key, timestamp, payload)

• Output    Features     (Key, timestamp, aggregated)

• Aggregation and join is fused

• Raw data >> query log



Naïve approach



Optimization – 1: Loop ordering



Optimization – 2 : Binary search
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Optimization – 3 : Tiling



Feature Backfill – Topology

Query Log
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Questions


