
Zipline
Airbnb’s Feature Engineering Framework

Nikhil Simha
nikhil.simha@airbnb.com

Exploration

Problem

Features

Model
Model
Serving

Feature
Store

Application

D
ata

Scien
tist

ML/Systems
Engineer

ML/Systems
Engineer

Training Serving

“We recognize that a mature system might end up being (at most)
5% machine learning code and (at least) 95% glue code” – Sculley, NIPS 2015

• Enable DS

• Best Practices

• Efficient

• Save time

Goals

• 60 – 70%

• Good data with okay/simple model

• Continuously arriving data

Feature Engineering

Your typical Data Warehouse

Service
Fleet

Production
Database

DB
Snapshot

Event log

Change
Capture
Stream

Event
Stream

Change
capture
log

Live

Derived
Data

Media

An example

● Restaurant recommendations

● Total visits to restaurants of the same cuisine

last month

● Average rating of the restaurant last year

● They are all aggregations

An example

● Predict likelihood of you liking a particular Indian restaurant

● Total visits to restaurants of the same cuisine last month

● COUNT(visit_id) GROUP BY cuisine WINDOW 1month

● checkin_stream(kafka) + checkin_log (hive)

● Average rating of the restaurant

● AVG(rating) GROUP BY restaurant_id WINDOW 1yr

● ratings_db_snapshot(hive) +

ratings_db_mutations(kafka/debezium)

They are all aggregations

Feature Set Example

Feature Set Example

Feature Set Example

F1

F2

F3

0 5 7

3

0 8

Time

4

2 4

Label

4

L

Predicti
on

P1 P2

7

3

8

4

2

8

L L

Training
data set

Aggregations + Temporal Join

Feature Serving for inference

What is the value of these feature aggregates now?

Feature Serving

• Latency

• Optimized for point queries

• Freshness vs latency

• Service Events and DB Mutations

• Batch correction

Real-time features

• Fact features: Fact log (hdfs) + Fact Stream (kafka)

• Service Events

• Dim features: Dim snapshot (hdfs) + Change Stream (kafka)

• Database snapshots

Model Server

Serving Architecture

Feature
Declaration

Streaming
aggregates

Batch
aggregates

Feature
Store

Model
Feature
Client

Application
Server

Computed Vs. Logged

• Easier to implement

• Fully consistent

• Horrible iteration time

• Computed + Consistent is our goal

Feature Computation for training

What are the exact feature values at the
points-of-interest in history?

User restaurant timestamp

sarah Zeni’s 2019-09-13 17:31

eve La mar 2019-09-14 17:40

anusha Chaat 2019-09-15 17:02

Example

visits

last month

avg rating

last year

5 4

20 4

6 2

Query Log Aggregated Features

Aggregation Math

Aggregations – SUM

• Commutative: a + b = b + a

• Associative: (a + b) + c = a + (b + c)

• Reversible: (a + b) – a = b

• Abelian Group

Aggregations – AVG

• One not-so-clever trick

• Operate on “Intermediate Representation” / IR

• Factors into (sum, count)

• Finalized by a division: (sum/count)

Aggregations

• Constant memory / Bounded IR

• Two classes of aggregations

• Sum, Avg, Count etc.,

• Reversible / Abelian Groups

• Min, Max, Approx Unique, most sketches etc.,

• Non-Reversible / Commutative Monoids / Non-Groups

Incremental Windowing – with reversibility

0 1 0 1 0 ..

Visits – check-in stream of a user

1 4 6 8 9 8 7

In the last year

-1 +0

2

2 2

Incremental Windowing – with reversibility

1 3

Max rating – Ratings table – grouped by user

3

2 4

4

4

1 0

1

0 1

1

1

4

2 3

3

1 0

1

3

1 2

2

2

2

4

Windowing – w/o reversibility

• Time: O(N^2) vs O(NLogN)

• Space: N vs 2N memory

Groups Non-Groups

Un-Windowed No-Reversal No-Reversal

Windowed Reversal Tree

Reversibility - Unpacking Change data

• Deletion is a reversal

• Update is a delete followed by an insert

• Example:

• Review is taken down

User restaurant timestamp

sarah Zeni’s 2019-09-13 17:31

eve La mar 2019-09-14 17:40

anusha Chaat 2019-09-15 17:02

Example

visits

last month

avg rating

last year

5 4

20 4

6 2

Query Log Aggregated Features

Feature Backfill

• Time-series join with aggregations

• Left Queries (Key, timestamp)

• Right Events (Key, timestamp, payload)

• Output Features (Key, timestamp, aggregated)

• Aggregation and join is fused

• Raw data >> query log

Naïve approach

Optimization – 1: Loop ordering

Optimization – 2 : Binary search

12 13

Tree Merge

0 1

Query timestamps

0-1

2 3

2-3

0-3

4 5

4-5

6 7

6-7

4-7

0-7

8 9

8-9

10 11

10-11

8-11

12-13

14 15

14-15

12-15

8-15

0-15

Incoming Event (ts, payload) Event span

Optimization – 3 : Tiling

Feature Backfill – Topology

Query Log
(key, query time)

Raw Data
(key, event time, payload)

Pivoted queries
(key, [query time])

Broadcast

Partial aggregate
(key, [query time], aggregate)

Tree
merge

Flat map
& Re-key

Partial Aggregate
((key, query time), aggregate)

Results
(key, query time, aggregate)

Shuffle
& Merge

GroupBy

Model Server

Architecture

Feature
Declaration

Streaming
Updates

Batch partial
aggregates

Feature
Store

Feature
Backfills

Model Training

Model
Feature
Client

Application
Server

Labeling

Questions

