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Why Responsible Al?

Nearly nine in ten organizations across countries have
encountered ethical issues resulting from the use of Al

In the last 2-3 years, have the below issues resulting from the use and implementation of Al
systems, been brought to your attention? (percentage of executives, by country)
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7.5.19 Report from Capgemini


https://www.capgemini.com/news/ethics-in-ai/
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Falrness

Useful links:

e Al Show

e Tutorial Video

e Customer Highlight



https://channel9.msdn.com/Shows/AI-Show/Building-fairer-AI-Systems-with-Fairlearn
https://channel9.msdn.com/Shows/AI-Show/How-to-Test-Models-for-Fairness-with-Fairlearn-Deep-Dive
https://customers.microsoft.com/en-us/story/809460-ey-partner-professional-services-azure-machine-learning-fairlearn

Falrness 1N Al

There are many ways that an Al system can behave unfairly.

po o

A voice recognition system might A model for screening loan or job application
fail to work as well for women as it might be much better at picking good candidates
does for men. among white men than among other groups.

Avoiding outcomes of Al systems for different groups of people



— Fairlearn  Assessing unfairness in your model

Disparity in accuracy @ > @

83.8% mz  12.4% g

o o Fairness Assessment:  Fairness Mitigation:
Use common fairness Use state-of-the-art algorithmsto
metrics and aninteractive mitigate unfairness in
dashboard to assess which groups your classification and regression models.
of people may be negatively
impacted.

M d | i ¢ Edit configuration
Disparity in predictions odel comparison
17.0% o | 15,79 smasmane Model Formats: Python models
using scikit predict convention,

Scikit, Tensorflow, Pytorch, Keras e
Metrics: 15+ Common group
fairness metrics : "

Model Types: Classification,
Regression

httos.//qithub.comy/iairlearry/fairlearn




Falrness Assessment
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Assessment Results

Disparity in performance
Disparity in predictions

Disparity in accuracy
838% g™ 12.4% i

BinaryGender Accuracy rate

79.7%

Disparity in predictions
17.9% cmme | 15.7% zecionrue "

BinaryGender Selection rate

23%

female

/ Edit configuration

How to read this chart

Underprediction
(predicted = 0, true = 1)

Overprediction

(predicted = 1, true = 0)
The bar chart shows the
distribution of errors in each
group.
Errors are split into
overprediction errors (predicting
1 when the true label is 0), and
underprediction errors
(predicting 0 when the true label
is 1).
The reported rates are obtained
by dividing the number of errors
by the overall group size.

How 1o read this chart

The bar chart shows the
selection rate in each group,
meaning the fraction of points
classified as 1.

Mitigation Algorithms

Post-processing algorithm
Reductions Algorithm



Machine Learning Interpretability in AzureML
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Interpretability

Useful links:
e Tutorial video

« OSS website
 Customer Highlight



https://channel9.msdn.com/Shows/AI-Show/How-to-Explain-Models-with-IntepretML-Deep-Dive
interpret.ml
https://customers.microsoft.com/en-us/story/781802-sas-travel-transportation-azure-machine-learning

M InterpretmL  Understand and debug your mode|

lackbox Models:
oty e , ror B : :
a (defaul) -+ Age 2 \ges0€0 - [JAGAEORGR Inte p et Model Formats: Python models using
Glassbox and blackbox —_ scikit predict convention, Scikit,
S — interpretability methods for Tensorflow, Pytorch, Keras,
| tabular data
Explore the top k important features that impact your overall model predictions. Use the slider to show descending EXplalnerS SHAP, LlME, Global
feature importances . Select up to three cohorts to see their feature importances side by side. Click on any of the .
features in the graph to see a density plot below of how values of the selected feature affect prediction. Surrogate, Feature Pefmutatloﬂ
Top 1-4 features  wm(D) 1-4
Dataset Cohorts .
Interpret-community ' Glassbox Models:
@ Aidata efauly " . it Model Types: Linear Models
. Additional interpretabilit yp o ’
S X y e Decision Trees, Decision Rules,

techniques for tabular data Explainable Boosting Machines

Sortby
@ Aldata (defaul)

Feature Importance

trsetintaction Varitalstates

SHAP Explainer @

Interpret-text

Interpretability methods
for text data

(© How to read this chart
View dependence plot for:

NumCompaniesWorked v/

3%
i
| ! : DiCE / Azureml-interpret
N—— " = e B i a—— AzureML SDK wrapper for Interpret
Explanations and Interpret-community

httos.//qgithub.comyinterpretm/
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Interpretability Approaches
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Glassbox Blackbox

Models Explanations
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Glassbox
Models

Models designedto be interpretable.

Lossless explainability.

Explainable Boosting Machine
Decision Trees
Rule Lists

Linear Models
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Explain any ML system.
Approximate explainability.
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Loan Application Decisions

Create a model for loan
application acceptance

Azure Machine Learning

| |

— Fairlearn M InterpretML

s my model fair? How does it decide who
to accept or reject?



Responsible Machine Learning in AzureML
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AzureML Responsible ML Resources

Fairlearn

Concept Doc:

How-to Doc: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-fairness-aml

InterpretML

Concept Doc: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-
interpretability

How-to Doc: https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-
interpretability-aml



https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-fairness-aml
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability
https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability-aml

