

Responsible ML: Develop and Deploy ML Responsibly

Mehrnoosh Sameki Senior Program Manager, Azure Al

Why Responsible AI?

Nearly nine in ten organizations across countries have encountered ethical issues resulting from the use of AI

In the last 2-3 years, have the below issues resulting from the use and implementation of AI systems, been brought to your attention? (percentage of executives, by country)

Microsoft's Al Principles

Fairness

Useful links:

- Al Show
- <u>Tutorial Video</u>
- Customer <u>Highlight</u>

Fairness in Al

There are many ways that an AI system can behave unfairly.

A voice recognition system might fail to work as well for women as it does for men.

A model for screening loan or job application might be much better at picking good candidates among white men than among other groups.

Avoiding negative outcomes of AI systems for different groups of people

— Fairlearn Assessing unfairness in your model

Disparity in predictions

Fairness Assessment:

Use common fairness metrics and an interactive dashboard to assess which groups of people may be negatively impacted.

Model Formats: Python models using scikit predict convention, Scikit, Tensorflow, Pytorch, Keras

Metrics: 15+ Common group fairness metrics

Model Types: Classification, Regression

Fairness Mitigation:

Use state-of-the-art algorithms to mitigate unfairness in your classification and regression models.

https://github.com/fairlearn/fairlearr

Fairness Assessment

Input Selections

Sensitive attribute Performance metric

Assessment Results

Disparity in performance Disparity in predictions

Mitigation Algorithms

Post-processing algorithm Reductions Algorithm

Machine Learning Interpretability in AzureML

Interpretability

Useful links:

- <u>Tutorial video</u>
- OSS <u>website</u>
- <u>Customer</u> Highlight

InterpretML Understand and debug your model

Interpret Glassbox and blackbox interpretability methods for tabular data

Interpret-community Additional interpretability techniques for tabular data

Blackbox Models: Model Formats: Python models using scikit predict convention, Scikit, Tensorflow, Pytorch, Keras,

Explainers: SHAP, LIME, Global Surrogate, Feature Permutation

Glassbox Models: Model Types: Linear Models, Decision Trees, Decision Rules, Explainable Boosting Machines

Interpret-text Interpretability methods for text data

DiCE Diverse Counterfactual Explanations

Azureml-interpret

AzureML SDK wrapper for Interpret and Interpret-community

https://github.com/interpretml

NumCompaniesWorked

InterpretML Understand and debug your model

https://github.com/interpretml

Interpretability Approaches

Blackbox Explanations

Glassbox Models Models *designed* to be interpretable. Lossless explainability.

Explainable Boosting Machine

Decision Trees

Rule Lists

Linear Models

• • • •

Blackbox Explanations

Explain *any* ML system. Approximate explainability.

SHAP LIME Partial Dependence Sensitivity Analysis

Understand and debug your model **M** InterpretML

Interpret Glassbox and blackbox interpretability methods for tabular data

Interpret-community techniques for tabular data

Interpret-text for text data

DiCE Diverse Counterfactual

Azureml-interpret

AzureML SDK wrapper for Interpret

Blackbox Models: Model Formats: Python models using Tensorflow, Pytorch, Keras,

Explainers: SHAP, LIME, Global

Loan Application Decisions

Responsible Machine Learning in AzureML

AzureML Responsible ML Resources

Fairlearn

Concept Doc: https://docs.microsoft.com/azure/machine-learning/concept-fairness-ml

How-to Doc: <u>https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-fairness-aml</u>

InterpretML

Concept Doc: <u>https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability</u>

How-to Doc: <u>https://docs.microsoft.com/en-us/azure/machine-learning/how-to-machine-learning-interpretability-aml</u>