
Pitfalls and Challenges of 
ML-Powered Applications

Emmanuel Ameisen



What is an ML platform?



ML Platforms

“The ML Platforms track focuses on 

the practice of moving machine 

learning systems from development

to deployment, and the next-

generation tooling that makes this 

an organic process.”



A (humble) 
user review of 
ML platforms

● Led dozens of projects using 

and building such platforms at 

Insight Data Science

● Been on multiple teams using 

these tools



Plan
1. What are ML platforms (now)

2. Offline data management

3. Model performance validation

4. Model deployment

5. Monitoring and alerting

6. Error preemption



Platforms have a wide surface area

Illustration from “Building ML Powered Applications”



Platforms have a wide surface area

Hidden Technical Debt in Machine Learning Systems



ML products 
aren’t about 

the ML
● Most of the surface area of an 

ML application is not the model
○ Most of the problems emerge 

outside of the model

○ It is easier to fix the system than 

the model



Offline data management



Illustration from “Building ML Powered Applications”



The dataset is a main part of the model

● Each model should be tied to a dataset 
○ Feature list and date range

○ Feature versions

○ Ideally with sufficient information to train an identical model

Illustration from “Building ML Powered Applications”



The challenge of generating data

● Adding new features should be as quick as possible
○ Joining with other existing features

○ Generating new derived features

○ Capturing new events to derive feature from

Illustration from “Building ML Powered Applications”



Feature stores and feature sharing

Stitch 
Fix
Style 
Shuffle



Storing arbitrary features

● Storing and sharing vectorized learned representations

● Enabling vector indexing (search applications)

Illustration from “Building ML Powered Applications”



Data storage 
for ML

● Fixed dataset vs dataset as a 

feature

● To be reproducible, a model 

needs to be tied to the data it 

was trained on

● Feature stores can create 

model lift by encouraging 

feature sharing



Model performance validation



Illustration from “Building ML Powered Applications”



It is often not provable that your model will work

Illustration from “Building ML Powered Applications”



Prod data storage creates data leakage

● It is almost impossible to prevent time traveling when using prod data directly

● This data leakage leads to models being wrong in subtle ways

● Lambda architectures (Zipline, Semblance) address this with event streams

Illustration from “Building ML Powered Applications”



No system can protect a user from themselves

“I separated the data using a random split”

Illustration from “Building ML Powered Applications”



Moving organically along the accuracy/risk scale

Illustration from “Building ML Powered Applications”



Eliminate
Reduce the 

impact of data 
leakage

● Simple (ideally accurate) 

backtesting 

● Shadow scoring

● Safe deployment
○ Gradual rollout

○ Easy rollbacks



Model deployment



Illustration from “Building ML Powered Applications”



Model deployment is too hard for humans

“You just serialized the train model and load it in a flask app”

Illustration from “Building ML Powered Applications”



Model deployment with versioning

● Which date was the model trained on

● What version of the data?

● Did we filter out users from these regions?

Illustration from “Building ML Powered Applications”



Model deployment with (more) versioning

● Which version of the app was this model trained on?

● Can we serve different models based on app version?

Illustration from “Building ML Powered Applications”



The fight against model staleness

● Most models go stale

● Retraining, validating, and deploying a model is toilsome

Illustration from “Building ML Powered Applications”



Helping 
humans 

deploy models
● Versioning of

○ Data

○ Model

○ Application

● Automatic redeployment
○ Determination of ideal interval

○ Automatic rollout and alerting



Monitoring and alerting



Illustration from “Building ML Powered Applications”



Shine a light on this data

● Bugs will happen

● Debugging models without seeing data is very hard

● True for training and inference

Illustration from “Building ML Powered Applications”



Alerts and testing in production

● Automated alerts can help catch simple issues

● Make it easy to tune thresholds to dial in false positives and negatives
○ Alert fatigue is real

Illustration from “Building ML Powered Applications”



Error preemption



Illustration from “Building ML Powered Applications”



The wrong kind of robustness

● If the data is in the right shape, a model will make a prediction

● How can we know if the model is winging it?

Illustration from “Building ML Powered Applications”



Branching logic for input checks

● Make it easy to check the inputs to a model and branch off
○ Presence checks

○ Statistical and range checks

○ Model confidence checks

Illustration from “Building ML Powered Applications”



Anomaly detection to support models

● If you can detect some type of anomalies, don’t even run models on them
○ Caveat: you may want to eventually train your model so it is self sufficient

Illustration from “Building ML Powered Applications”



Adding a filtering model

● Use a simpler model to filter inputs

● Used by Google Smart Reply to decide whether to propose an answer

Illustration from “Building ML Powered Applications”



Models will 
make errors: 
build for it

● Heuristic fallback

● Input and model confidence 

checks

● Anomaly detection

● Filtering model



Poorly summarized takeaways
1. What are ML platforms

○ Tools to help manage inevitable model failures

2. Offline data management
○ Creating and combining features should be easier than trying new models

3. Model performance validation
○ Helping prevent time-traveling is valuable, but only to a certain extent

4. Model deployment
○ Infrastructure could handle re-deploying models automatically and assisting with versioning

5. Monitoring and alerting
○ Enable inspection at different parts of the supply chain, and provide tunable alerts

6. Error preemption
○ Enable input and output checks to plan for said inevitable model failures



Thank you

For more lessons learned and tips for building ML apps:

Find the first chapter at mlpowered.com/book/

Reach out to me @mlpowered

http://mlpowered.com/book/
http://twitter.com/mlpowered

