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Machine Learning Model Lifecycle



Cities

1000+

Uber’s Scale

Model Instances

1m+
Products

20+

Countries

80+



Machine Learning Model Lifecycle

What is the best 
available model 
instance to deploy 
right now?

When should I 
retrain or 
deprecate my 
model?

How do my 
different models 
compare to one 
another?



Motivating Challenges

● Managing model lifecycle at scale. 

● Microservice architecture leads to custom modeling platforms.

● Inability to collaborate
○ The lack of a central model manager and the proliferation of modeling 

platforms leads to models being built in isolation and causes 
cross-team incompatibility. 



Motivating Industry Example

Not many existing examples of model management. But we can draw 
inspiration from software development. 

Git

1. Well-understood and standard API that's compatible with all dev 
environments. 

2. Central repository for all code that enforces data accuracy.
3. Standardized schema for versioning and referencing code. 
4. Building block for CI/CD systems.



Michelangelo Gallery
"Git for models"

Gallery is a system that
- Is part of Michelangelo1, Uber's internal 

ML-as-a-service platform.  

- Stores models with associated 

metadata and metrics. 

- Versions models and tracks 

dependencies to enable reproducibility. 

- Provides a search engine to automate 

orchestration decisions.

Gallery2

1. https://eng.uber.com/michelangelo-machine-learning-platform/ 
2. https://community.hitachivantara.com/s/article/4-steps-to-machine-learning-model-management

https://eng.uber.com/michelangelo-machine-learning-platform/
https://community.hitachivantara.com/s/article/4-steps-to-machine-learning-model-management
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Framework Agnostic
APIs and features are designed to 
be leveraged by any modeling 
ecosystem to enable usage by all 
applications. 

Automation
Build features that support 
automating model lifecycle stages 
to reduce manual production 
maintenance costs. 

Immutable
All model instances managed by 
Gallery are immutable ensuring 
that any prediction can be tracked 
to a model. 

Design 
Principles

Model Neutral
Models are treated as a black box 
and allow Gallery to manage 
models independently of their 
framework. 
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System Architecture



Blob Storage

"Git for Models"

● Gallery provides a model format and framework agnostic API for users to 
commit trained models. 

● Trained models can be retrieved at serving time or for adhoc analysis. 
● Underlying blobs are stored in S3. 

API

● upload_model_blob(project, model, file_name)
● download_model_blob_content(project, model)



Model instances are tagged with version ids and 
are associated to one another to trace lineage. 

Instances solving the same business problems are 
grouped together as version sets. 

This allows model developers to track the evolution 
of their models over time. 

Versioning

https://app.lucidchart.com/documents/edit/d081294c-603a-4df9-a5a0-1bb162e038bb/1?callback=close&name=slides&callback_type=back&v=1114&s=720


Example: VERSIONS page for models



Metadata

What is model metadata?

● Information about an ML model needed for its manageability
○ Access, Reproducibility, Accountability, Tracking/Monitoring
○ Includes type, owners, training config, deployment status, performance

How is it used?

● Search for models. 
● Select and compare models based on performance. 



Example fields that are stored and searched 
against:

● City
● Product (e.g., UberX, Uber Eats)
● User Tags
● Model Type (e.g., regression, 

classification)
● Features
● Model Performance (e.g., test AUC, train 

AUC, serving AUC)

Metadata



● Based on model metadata exported 
to Elasticsearch for indexing

● Common searches
○ Latest instance of a model version
○ Latest instance of a model version within a 

performance constraint
○ Best performing instance of a model 

version

● Based on the search result
○ Retrain a model to improve performance

Model Search
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Case Study - Marketplace Forecasting

Marketplace Forecasting generates spatio-temporal predictions for a variety of applications.

● Prior to Gallery, the Marketplace Forecasting faced 4 major problems:
○ Where to store all their models?
○ How to organize and search those models?
○ How to track which model produced a forecast? 
○ When to re-train and deploy models? 

● These 4 problems limited scalability, velocity, observability, and accuracy. 



Reduced Deployment Time
The unified model storage interface 
and data model has reduced 
manual deployment time from 2 
hours to 0. 

Improved Forecasting Accuracy
Dynamic model selection via the Galley 
Rule Engine has reduced forecast MAPE 
by 10+%. 

Integration with Gallery has resulted in:

Case Study - Marketplace Forecasting



Model Reusability
Gallery's storage API allowed users 
to reuse models across multiple 
simulations, rather than 
recomputing on-the-fly. 

Train/Serving Decoupling
With Gallery, training was decoupled 
from the simulator leading to 8GB 
memory reduction and one hour CPU 
saving per simulation. 

The Marketplace Simulation Platform1 hosts a simulated world with driver-partners and 
riders, mimicking scenarios in the real world.

Case Study - Marketplace Simulation Platform

1. https://eng.uber.com/simulated-marketplace/

https://eng.uber.com/simulated-marketplace/
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Lessons Learned

1. Common ML Tools
a. Build reusable components that plug into diverse modeling applications. 

2. Model Reproducibility 
a. Triaging and debugging issues requires the ability to reproduce models 

and predictions at any point of the model lifecycle. 

3. Tiered Service Offering
a. Offer modular features that can be incrementally adopted by customers. 



Next Steps

● Track the cost of training models to compute ROI. 
● Model lineage and dependency tracking. 

○ How does the performance of one model impact downstream models? 

● Automate model experimentation to shadowing.
○ Safely deploy new models with ability to rollback. 



Thank you!

Questions/Comments?
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