
Gallery:
A Machine Learning Model
Management System at
Uber

Nader Azari, Yifan Ma

July 10, 2020

01 Introduction
02 Design Principles
03 Gallery System
04 Case Studies
05 Lessons Learned and Next Steps
06 Q&A

Agenda

Machine Learning Model Lifecycle

Cities

1000+

Uber’s Scale

Model Instances

1m+
Products

20+

Countries

80+

Machine Learning Model Lifecycle

What is the best
available model
instance to deploy
right now?

When should I
retrain or
deprecate my
model?

How do my
different models
compare to one
another?

Motivating Challenges

● Managing model lifecycle at scale.

● Microservice architecture leads to custom modeling platforms.

● Inability to collaborate
○ The lack of a central model manager and the proliferation of modeling

platforms leads to models being built in isolation and causes
cross-team incompatibility.

Motivating Industry Example

Not many existing examples of model management. But we can draw
inspiration from software development.

Git

1. Well-understood and standard API that's compatible with all dev
environments.

2. Central repository for all code that enforces data accuracy.
3. Standardized schema for versioning and referencing code.
4. Building block for CI/CD systems.

Michelangelo Gallery
"Git for models"

Gallery is a system that
- Is part of Michelangelo1, Uber's internal

ML-as-a-service platform.

- Stores models with associated

metadata and metrics.

- Versions models and tracks

dependencies to enable reproducibility.

- Provides a search engine to automate

orchestration decisions.

Gallery2

1. https://eng.uber.com/michelangelo-machine-learning-platform/
2. https://community.hitachivantara.com/s/article/4-steps-to-machine-learning-model-management

https://eng.uber.com/michelangelo-machine-learning-platform/
https://community.hitachivantara.com/s/article/4-steps-to-machine-learning-model-management

01 Introduction
02 Design Principles
03 Gallery System
04 Case Studies
05 Lessons Learned and Next Steps
06 Q&A

Agenda

Framework Agnostic
APIs and features are designed to
be leveraged by any modeling
ecosystem to enable usage by all
applications.

Automation
Build features that support
automating model lifecycle stages
to reduce manual production
maintenance costs.

Immutable
All model instances managed by
Gallery are immutable ensuring
that any prediction can be tracked
to a model.

Design
Principles

Model Neutral
Models are treated as a black box
and allow Gallery to manage
models independently of their
framework.

01 Introduction
02 Design Principles
03 Gallery System
04 Case Studies
05 Lessons Learned and Next Steps
06 Q&A

Agenda

System Architecture

Blob Storage

"Git for Models"

● Gallery provides a model format and framework agnostic API for users to
commit trained models.

● Trained models can be retrieved at serving time or for adhoc analysis.
● Underlying blobs are stored in S3.

API

● upload_model_blob(project, model, file_name)
● download_model_blob_content(project, model)

Model instances are tagged with version ids and
are associated to one another to trace lineage.

Instances solving the same business problems are
grouped together as version sets.

This allows model developers to track the evolution
of their models over time.

Versioning

https://app.lucidchart.com/documents/edit/d081294c-603a-4df9-a5a0-1bb162e038bb/1?callback=close&name=slides&callback_type=back&v=1114&s=720

Example: VERSIONS page for models

Metadata

What is model metadata?

● Information about an ML model needed for its manageability
○ Access, Reproducibility, Accountability, Tracking/Monitoring
○ Includes type, owners, training config, deployment status, performance

How is it used?

● Search for models.
● Select and compare models based on performance.

Example fields that are stored and searched
against:

● City
● Product (e.g., UberX, Uber Eats)
● User Tags
● Model Type (e.g., regression,

classification)
● Features
● Model Performance (e.g., test AUC, train

AUC, serving AUC)

Metadata

● Based on model metadata exported
to Elasticsearch for indexing

● Common searches
○ Latest instance of a model version
○ Latest instance of a model version within a

performance constraint
○ Best performing instance of a model

version

● Based on the search result
○ Retrain a model to improve performance

Model Search

01 Introduction
02 Design Principles
03 Gallery System
04 Case Studies
05 Lessons Learned and Next Steps
06 Q&A

Agenda

Case Study - Marketplace Forecasting

Marketplace Forecasting generates spatio-temporal predictions for a variety of applications.

● Prior to Gallery, the Marketplace Forecasting faced 4 major problems:
○ Where to store all their models?
○ How to organize and search those models?
○ How to track which model produced a forecast?
○ When to re-train and deploy models?

● These 4 problems limited scalability, velocity, observability, and accuracy.

Reduced Deployment Time
The unified model storage interface
and data model has reduced
manual deployment time from 2
hours to 0.

Improved Forecasting Accuracy
Dynamic model selection via the Galley
Rule Engine has reduced forecast MAPE
by 10+%.

Integration with Gallery has resulted in:

Case Study - Marketplace Forecasting

Model Reusability
Gallery's storage API allowed users
to reuse models across multiple
simulations, rather than
recomputing on-the-fly.

Train/Serving Decoupling
With Gallery, training was decoupled
from the simulator leading to 8GB
memory reduction and one hour CPU
saving per simulation.

The Marketplace Simulation Platform1 hosts a simulated world with driver-partners and
riders, mimicking scenarios in the real world.

Case Study - Marketplace Simulation Platform

1. https://eng.uber.com/simulated-marketplace/

https://eng.uber.com/simulated-marketplace/

01 Introduction
02 Design Principles
03 Gallery System
04 Case Studies
05 Lessons Learned and Next Steps
06 Q&A

Agenda

Lessons Learned

1. Common ML Tools
a. Build reusable components that plug into diverse modeling applications.

2. Model Reproducibility
a. Triaging and debugging issues requires the ability to reproduce models

and predictions at any point of the model lifecycle.

3. Tiered Service Offering
a. Offer modular features that can be incrementally adopted by customers.

Next Steps

● Track the cost of training models to compute ROI.
● Model lineage and dependency tracking.

○ How does the performance of one model impact downstream models?

● Automate model experimentation to shadowing.
○ Safely deploy new models with ability to rollback.

Thank you!

Questions/Comments?

Proprietary and confidential © 2019 Uber Technologies, Inc. All rights reserved. No part of this document may be reproduced or utilized

in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

systems, without permission in writing from Uber. This document is intended only for the use of the individual or entity to whom it is

addressed and contains information that is privileged, confidential or otherwise exempt from disclosure under applicable law. All

recipients of this document are notified that the information contained herein includes proprietary and confidential information of Uber,

and recipient may not make use of, disseminate, or in any way disclose this document or any of the enclosed information to any person

other than employees of addressee to the extent necessary for consultations with authorized personnel of Uber.

