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Motivation & Goal

ML & Data services are increasingly complex 
and interdependent
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Motivation & Goal

It’s not only all about ML Code

Source: Sculley et al: Hidden Technical Debt in Machine Learning Systems
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Flyte in ML lifecycle

A typical ML Model Lifecycle

https://app.lucidchart.com/invitations/accept/cc01da8d-58dd-45bc-8706-d91be4b8d5db


Flyte in ML lifecycle

Where Flyte fits in...

https://app.lucidchart.com/invitations/accept/cc01da8d-58dd-45bc-8706-d91be4b8d5db


Production Grade Orchestration for Data & 
ML

Orchestrate ML & Data 
Workflows

Collaborate, Reuse, and 
perform ML Ops Across 
Teams

Flyte in ML lifecycle



Hosted, scalable and serverless 
Orchestration Platform

Fabric that connects disparate compute 
technologies

Extensible, Observable & shareable

Integrates best of the breed open source 
solutions

Auditable, Repeatable & Secure



Structure
Concepts & Features

● ETA Models
○ Development
○ Staging
○ Production

■      TrainETAModel

■        dataset_split
■        train_model

● Mapping
○ Development
○ Staging
○ Production

● ...

Project

Domains

Workflows

Tasks



● Declarative (protobuf)
● Versioned
● Strongly typed interfaces
● Models the flow of Data
● Tasks

○ Arbitrarily complex
○ Encapsulate user code

● Workflows
○ Composable
○ Dynamic
○ DSL

Tasks & Workflows
Concepts & Features



Atomic unit of work & entrypoint to user 
code. Language agnostic.

Can be executed independently.

Tasks
Concepts & Features

@inputs(rides=Types.Schema[...], k=Types.Integer)
@outputs(dest=[Types.String])
@spark_task(spark_conf={“executors”:2})
def find_topk_destinations(ctx, spark_ctx, rides, 
k, dest):
  '''
  Find the top k destinations for the given set 
of rides ordered by frequency
  '''

edges = SdkRawContainerTask(

    input_data_dir="/inputs",

    output_data_dir="/outputs",

    inputs={"image": Types.Blob, "script": Types.Blob},

    outputs={"edges": Types.Blob},

    image="jjanzic/docker-python3-opencv",

    command=["python", "{{.inputs.script}}", 

"/inputs/image", "/outputs/edges"],

)

case class SumTaskInput(a: Long, b: Long)

case class SumTaskOutput(c: Long)

class SumTask extends … {

   override def 

run(input:SumTaskInput):SumTaskOutput = {

    SumTaskOutput(input.a + input.b)

  }

}
https://github.com/spotify/flytekit-java

Spark Code

Arbitrary containers

flytekit Scala https://github.com/lyft/flytekit

https://github.com/spotify/flytekit-java
https://github.com/lyft/flytekit


Specify the data dependency between tasks 
(as DAGs). Composable & declarative!

Multiple schedules for the same Workflow

Workflows
Concepts & Features @workflow_class

class TrainModel(object):
 # Accept inputs
 data = Input(Types.Schema[...])
 hyperparam = Input(Types.Float)
 # Split the dataset
 split = split8020(data=data)

 model = fit_xgboost(
             data=split.train,
             hyperparam=hyperparam)

 pred = eval_xgboost(data=split.val,
             m=model.outputs.v)

 metrics = compute_metrics(
             data=split.val,
             pred=pred.y_pred)
 # Create outputs
 model = Output(model.outputs.v)
 accuracy = Output(metrics.outputs.acc)

ML Model Train example

@workflow_class(cron=***)
class StaticSubWorkflowCaller(object):
    in = Input(Types.Integer, default=5, 
help="Input for inner workflow")
    identity_wf_execution = 
IdentityWorkflow(a=outer_a)
    out = 
Output(identity_wf_execution.outputs.task_o
utput, sdk_type=Types.Integer)

Compose with other WF’s



Flyte Workflows are statically defined and immutable. 
But, they can contain nodes - that can change the shape 
dynamically.

Data parallel jobs, dynamic generation of workflows 
(generate logic using the available data), etc.

Dynamism
Concepts & Features

@inputs(num=Types.Integer)
@outputs(out=Types.Integer)
@dynamic_task
def sub_wf_yield_task(wf_params, num, out):
    wf_params.logging.info("Running inner task... yielding a 
sub-workflow")
    identity_wf_execution = IdentityWorkflow(a=num)
    yield identity_wf_execution
    out.set(identity_wf_execution.outputs.task_output)

D

D J J2 Jn

Dynamically spawn a workflow

Dynamically spawn an array of map-only



Projects, Domains & Versions 
● Projects offer logical grouping of Workflows & Tasks and can be split across one or 

more repositories, one or more containers
● Domains and Versions provide CI/CD like semantics to Workflows & Tasks

○ Users can push new versions to production, rollback to previous version etc.
○ Users can have workflows in integration/staging env

● Domains are configured globally for the system (by administrators)

Sharing & Accounting
● Workflows can refer to tasks and workflows from other projects
● Executions accounted/billed under the requesters project & domain (Infraspend)

Grouping & Sharing
Concepts & Features



@workflow_class
class PipelineA(object):
   in1 = Input(Types.Integer)
   in2 = Input(Types.Integer)   
   …
   out1 = Output(print2.outputs.out)

@inputs(x=Types.Integer, y=Types.Integer)
@outputs(z=Types.Integer)
@task
def my_model(x, y):
   ….

Project: ProjectA @workflow_class
class CompositePipeline(object):
  
  composed_wf = lps.fetch(
          "ProjectA",
          "Production",
          "PipelineA",
          "1.0.2"
          )(in1, in2)

  t1 = local_task(composed_wf.outputs.out)

  t2 = tasks.fetch(
            "ProjectA",
            "Production",
            "my_model",
            "2.0.0"
            )(x=t1.outputs.x, y=10)

Project: ProjectB

Shareability: Flytekit Example
Concepts & Features

Project: ProjectA



Every task execution in Flyte is recorded by default in Catalog 
Service. This enables Flyte executions to have,

Artifact Lineage
● Causal dependencies between data and processes is 

tracked

Memoization
● Each task execution has a unique signature, which 

includes the input values & version of code
● Repeated executions with matching signatures are 

cached

Task A Task B

Task C

Task D Task E

Task F

Task G

Task H

DataCatalog: Lineage & Memoization
Concepts and Features

WF1

WF2
WF3



Serverless
User should only worry about business logic
● specify resource requirements - CPU, GPU, Memory, 

#spark executors etc
● develop multiple versions of code concurrently
● Multi-tenancy unaware
● Simple gRPC/REST API to access all the power
● Language agnostic - flytekit (python) and flytekit-java, raw 

containers
● Get notifications and alerts for specific events (failures, 

successes etc)
● Retrieve results of past executions

Concepts & Features

@python(gpu_hint=1, cpu=4, 
retries=3, timeout=30s)
def myFunction():
   ...



@sensor_task

def my_test_task(ctx):

  '''

  E.g. sensor that waits for a hive partition 

  to land. This is added as a contrib.

  '''

  return MyHivePartitionSensor()

Extensible
Concepts & Features

● Container executions are purely from Flyte’s POV. (you 
can write in python, Java etc)

● But this is limited to the implementation SDK
● Backend extensions allow extending capabilities of 

Flyte.

E.g. Spark, 
Distributed Training, 
Sagemaker
Flink



Architecture Overview 
Architecture

Default: Single 
Kubernetes cluster with 
scale-out options to 
cloud services like AWS 
Batch.



8.5k Unique Workflows defined

54k Unique Task definitions

1million+ Workflow executions per month

10 million+ task executions per month

40 million+ containers executed per month

Architecture

Real Production Scale



Challenges
Architecture & Challenges

● Super-exponential growth, spiked 6x in 2 
days

● Flyte had problems
○ Users lacked visibility 
○ System admins were overwhelmed 

with operations
○ The cost expenditure ballooned
○ Various scaling problems

■ K8s control plane
■ etcD and K8s Controller
■ K8s Scheduler
■ FlytePropeller is complex (data 

handling)
● We started diving deeper and optimizing



● We observed problems with 
Single Kubernetes cluster - 

○ API latency
○ Pod startup issues
○ etcD object size limits

● Single instance of 
FlytePropeller* can run 
more than 2000 workflows 
concurrently 

○ Informer caches
○ Smart control loop short 

circuits
○ Status compression 
○ many more!

Architecture & Challenges

Challenge: Scale



Challenge: Multi-tenancy
Architecture & Challenges

● Flyte projects are multi-tenancy primitives. Some tenants have larger use-cases as 
compared to others

● Flyte leverages ResourceQuotas from Kubernetes
○ Flyte Cluster resource controller allows dynamic modification of limits
○ Observability tools show current utilization
○ FlytePropeller backs off intelligently to relieve KubeAPI pressure

● Flyte provides a custom Resource manager on top of Kubernetes Quotas that ensure 
Gobal limits and per tenant limits
○ These limits help maintain downstream service
○ Queues to maintain fairness (OSS in progress)

● K8s CRD FairQ (inprogress)



● Automatically generated user 
dashboard - grafana template (oss 
soon)

● Errors from execution pulled into 
the UI

● Logs from distributed tasks like 
Spark are pulled into the UI

● Users can triage amount of 
CPU/memory utilized by single 
execution

● User vs System errors are clearly 
separated

Challenge: Visibility
Architecture & Challenges



● Standardized Grafana template for 
Admins (OSS soon)

● Improved documentation and examples 
(Work in progress)

● Staged rollouts
● FlyteAdmin provides a flexible routing 

system to multiple K8s clusters
○ Allows isolating important usecases in 

different clusters
○ Deployments bake in lower priority 

clusters before proceeding

Challenge: Operations
Architecture & Challenges



● Centralized platform
○ Amortize TCO
○ Efficiency multiplier
○ Centralized tooling to visualize 

costs
● Utilize Spot instances (AWS only)
● Optimized Cluster Autoscaler (reduced 

spend by 25%)
● Coming soon: K8s scheduler 

optimizations

Challenge: Efficiency
Architecture & Challenges



Feature Highlights
● Hive, Presto, 



Demo



Ecosystem
Conclusion

I

Coming soon

In testing

Coming soon



Flyte is constantly evolving and new features are coming soon like, 
● Flytekit python Enhancement & Flytekit JAVA primetime ready
● Richer data catalog visualization
● UI improvements
● Reactive workflows (respond to data publication events)
● Better documentation and more examples
● Faster getting started

To find more details visit our docs and the Roadmap section. Also join our fledgeling 
community and help us shape the future of Flyte. We appreciate contributions and 
suggestions.

What’s Next 
Conclusion



Thanks!
Learn more, get started & keep in 
touch at Flyte.org

    @HaythamAbuelfutuh
    @HaythamAbuelfutuh
    @EngHabu


