
Flyte

Haytham Abuelfutuh
Software Engineer
Lyft

 @HaythamAbuelfutuh
 @HaythamAbuelfutuh
 @EngHabu

Production Grade Orchestration for Data
and ML

Motivation & Goal
What problem are we trying to solve?

Flyte in ML lifecycle
Where Flyte fits in the ML Lifecycle

Architecture
A quick overview of the architecture

DSL & Features
Concepts, features and user interface

Demo
Everyone loves demos!

Conclusion
Learn more, get involved, & get started

Agenda

Motivation & Goal

ML & Data services are increasingly complex
and interdependent

Mapping

Routing

Estimated
time of
arrivals

Insurance

Shared rides

Incentive Model

Pricing

ETL Data

Feature store

Fraud

Driver

Forecasting

Rider

Autonomous
Maps

Street Imagery

Manual Map
correction

AV Simulation

Data and ML
processes often
interact.

Data Flow is
very complex
and machine
learning is more
than just model
code.

Motivation & Goal

It’s not only all about ML Code

Source: Sculley et al: Hidden Technical Debt in Machine Learning Systems

Configuration

Serving
Infrastructure

Data Collection

Data
Verification Monitoring

Process Management
Tools

Machine
Resource

ManagementFeature Extraction

Analysis ToolsML
Code

Flyte in ML lifecycle

A typical ML Model Lifecycle

https://app.lucidchart.com/invitations/accept/cc01da8d-58dd-45bc-8706-d91be4b8d5db

Flyte in ML lifecycle

Where Flyte fits in...

https://app.lucidchart.com/invitations/accept/cc01da8d-58dd-45bc-8706-d91be4b8d5db

Production Grade Orchestration for Data &
ML

Orchestrate ML & Data
Workflows

Collaborate, Reuse, and
perform ML Ops Across
Teams

Flyte in ML lifecycle

Hosted, scalable and serverless
Orchestration Platform

Fabric that connects disparate compute
technologies

Extensible, Observable & shareable

Integrates best of the breed open source
solutions

Auditable, Repeatable & Secure

Structure
Concepts & Features

● ETA Models
○ Development
○ Staging
○ Production

■ TrainETAModel

■ dataset_split
■ train_model

● Mapping
○ Development
○ Staging
○ Production

● ...

Project

Domains

Workflows

Tasks

● Declarative (protobuf)
● Versioned
● Strongly typed interfaces
● Models the flow of Data
● Tasks

○ Arbitrarily complex
○ Encapsulate user code

● Workflows
○ Composable
○ Dynamic
○ DSL

Tasks & Workflows
Concepts & Features

Atomic unit of work & entrypoint to user
code. Language agnostic.

Can be executed independently.

Tasks
Concepts & Features

@inputs(rides=Types.Schema[...], k=Types.Integer)
@outputs(dest=[Types.String])
@spark_task(spark_conf={“executors”:2})
def find_topk_destinations(ctx, spark_ctx, rides,
k, dest):
 '''
 Find the top k destinations for the given set
of rides ordered by frequency
 '''

edges = SdkRawContainerTask(

 input_data_dir="/inputs",

 output_data_dir="/outputs",

 inputs={"image": Types.Blob, "script": Types.Blob},

 outputs={"edges": Types.Blob},

 image="jjanzic/docker-python3-opencv",

 command=["python", "{{.inputs.script}}",

"/inputs/image", "/outputs/edges"],

)

case class SumTaskInput(a: Long, b: Long)

case class SumTaskOutput(c: Long)

class SumTask extends … {

 override def

run(input:SumTaskInput):SumTaskOutput = {

 SumTaskOutput(input.a + input.b)

 }

}
https://github.com/spotify/flytekit-java

Spark Code

Arbitrary containers

flytekit Scala https://github.com/lyft/flytekit

https://github.com/spotify/flytekit-java
https://github.com/lyft/flytekit

Specify the data dependency between tasks
(as DAGs). Composable & declarative!

Multiple schedules for the same Workflow

Workflows
Concepts & Features @workflow_class

class TrainModel(object):
 # Accept inputs
 data = Input(Types.Schema[...])
 hyperparam = Input(Types.Float)
 # Split the dataset
 split = split8020(data=data)

 model = fit_xgboost(
 data=split.train,
 hyperparam=hyperparam)

 pred = eval_xgboost(data=split.val,
 m=model.outputs.v)

 metrics = compute_metrics(
 data=split.val,
 pred=pred.y_pred)
 # Create outputs
 model = Output(model.outputs.v)
 accuracy = Output(metrics.outputs.acc)

ML Model Train example

@workflow_class(cron=***)
class StaticSubWorkflowCaller(object):
 in = Input(Types.Integer, default=5,
help="Input for inner workflow")
 identity_wf_execution =
IdentityWorkflow(a=outer_a)
 out =
Output(identity_wf_execution.outputs.task_o
utput, sdk_type=Types.Integer)

Compose with other WF’s

Flyte Workflows are statically defined and immutable.
But, they can contain nodes - that can change the shape
dynamically.

Data parallel jobs, dynamic generation of workflows
(generate logic using the available data), etc.

Dynamism
Concepts & Features

@inputs(num=Types.Integer)
@outputs(out=Types.Integer)
@dynamic_task
def sub_wf_yield_task(wf_params, num, out):
 wf_params.logging.info("Running inner task... yielding a
sub-workflow")
 identity_wf_execution = IdentityWorkflow(a=num)
 yield identity_wf_execution
 out.set(identity_wf_execution.outputs.task_output)

D

D J J2 Jn

Dynamically spawn a workflow

Dynamically spawn an array of map-only

Projects, Domains & Versions
● Projects offer logical grouping of Workflows & Tasks and can be split across one or

more repositories, one or more containers
● Domains and Versions provide CI/CD like semantics to Workflows & Tasks

○ Users can push new versions to production, rollback to previous version etc.
○ Users can have workflows in integration/staging env

● Domains are configured globally for the system (by administrators)

Sharing & Accounting
● Workflows can refer to tasks and workflows from other projects
● Executions accounted/billed under the requesters project & domain (Infraspend)

Grouping & Sharing
Concepts & Features

@workflow_class
class PipelineA(object):
 in1 = Input(Types.Integer)
 in2 = Input(Types.Integer)
 …
 out1 = Output(print2.outputs.out)

@inputs(x=Types.Integer, y=Types.Integer)
@outputs(z=Types.Integer)
@task
def my_model(x, y):
 ….

Project: ProjectA @workflow_class
class CompositePipeline(object):

 composed_wf = lps.fetch(
 "ProjectA",
 "Production",
 "PipelineA",
 "1.0.2"
)(in1, in2)

 t1 = local_task(composed_wf.outputs.out)

 t2 = tasks.fetch(
 "ProjectA",
 "Production",
 "my_model",
 "2.0.0"
)(x=t1.outputs.x, y=10)

Project: ProjectB

Shareability: Flytekit Example
Concepts & Features

Project: ProjectA

Every task execution in Flyte is recorded by default in Catalog
Service. This enables Flyte executions to have,

Artifact Lineage
● Causal dependencies between data and processes is

tracked

Memoization
● Each task execution has a unique signature, which

includes the input values & version of code
● Repeated executions with matching signatures are

cached

Task A Task B

Task C

Task D Task E

Task F

Task G

Task H

DataCatalog: Lineage & Memoization
Concepts and Features

WF1

WF2
WF3

Serverless
User should only worry about business logic
● specify resource requirements - CPU, GPU, Memory,

#spark executors etc
● develop multiple versions of code concurrently
● Multi-tenancy unaware
● Simple gRPC/REST API to access all the power
● Language agnostic - flytekit (python) and flytekit-java, raw

containers
● Get notifications and alerts for specific events (failures,

successes etc)
● Retrieve results of past executions

Concepts & Features

@python(gpu_hint=1, cpu=4,
retries=3, timeout=30s)
def myFunction():
 ...

@sensor_task

def my_test_task(ctx):

 '''

 E.g. sensor that waits for a hive partition

 to land. This is added as a contrib.

 '''

 return MyHivePartitionSensor()

Extensible
Concepts & Features

● Container executions are purely from Flyte’s POV. (you
can write in python, Java etc)

● But this is limited to the implementation SDK
● Backend extensions allow extending capabilities of

Flyte.

E.g. Spark,
Distributed Training,
Sagemaker
Flink

Architecture Overview
Architecture

Default: Single
Kubernetes cluster with
scale-out options to
cloud services like AWS
Batch.

8.5k Unique Workflows defined

54k Unique Task definitions

1million+ Workflow executions per month

10 million+ task executions per month

40 million+ containers executed per month

Architecture

Real Production Scale

Challenges
Architecture & Challenges

● Super-exponential growth, spiked 6x in 2
days

● Flyte had problems
○ Users lacked visibility
○ System admins were overwhelmed

with operations
○ The cost expenditure ballooned
○ Various scaling problems

■ K8s control plane
■ etcD and K8s Controller
■ K8s Scheduler
■ FlytePropeller is complex (data

handling)
● We started diving deeper and optimizing

● We observed problems with
Single Kubernetes cluster -

○ API latency
○ Pod startup issues
○ etcD object size limits

● Single instance of
FlytePropeller* can run
more than 2000 workflows
concurrently

○ Informer caches
○ Smart control loop short

circuits
○ Status compression
○ many more!

Architecture & Challenges

Challenge: Scale

Challenge: Multi-tenancy
Architecture & Challenges

● Flyte projects are multi-tenancy primitives. Some tenants have larger use-cases as
compared to others

● Flyte leverages ResourceQuotas from Kubernetes
○ Flyte Cluster resource controller allows dynamic modification of limits
○ Observability tools show current utilization
○ FlytePropeller backs off intelligently to relieve KubeAPI pressure

● Flyte provides a custom Resource manager on top of Kubernetes Quotas that ensure
Gobal limits and per tenant limits
○ These limits help maintain downstream service
○ Queues to maintain fairness (OSS in progress)

● K8s CRD FairQ (inprogress)

● Automatically generated user
dashboard - grafana template (oss
soon)

● Errors from execution pulled into
the UI

● Logs from distributed tasks like
Spark are pulled into the UI

● Users can triage amount of
CPU/memory utilized by single
execution

● User vs System errors are clearly
separated

Challenge: Visibility
Architecture & Challenges

● Standardized Grafana template for
Admins (OSS soon)

● Improved documentation and examples
(Work in progress)

● Staged rollouts
● FlyteAdmin provides a flexible routing

system to multiple K8s clusters
○ Allows isolating important usecases in

different clusters
○ Deployments bake in lower priority

clusters before proceeding

Challenge: Operations
Architecture & Challenges

● Centralized platform
○ Amortize TCO
○ Efficiency multiplier
○ Centralized tooling to visualize

costs
● Utilize Spot instances (AWS only)
● Optimized Cluster Autoscaler (reduced

spend by 25%)
● Coming soon: K8s scheduler

optimizations

Challenge: Efficiency
Architecture & Challenges

Feature Highlights
● Hive, Presto,

Demo

Ecosystem
Conclusion

I

Coming soon

In testing

Coming soon

Flyte is constantly evolving and new features are coming soon like,
● Flytekit python Enhancement & Flytekit JAVA primetime ready
● Richer data catalog visualization
● UI improvements
● Reactive workflows (respond to data publication events)
● Better documentation and more examples
● Faster getting started

To find more details visit our docs and the Roadmap section. Also join our fledgeling
community and help us shape the future of Flyte. We appreciate contributions and
suggestions.

What’s Next
Conclusion

Thanks!
Learn more, get started & keep in
touch at Flyte.org

 @HaythamAbuelfutuh
 @HaythamAbuelfutuh
 @EngHabu

