

From Federated Learning to Federated Analytics

Building on the work of many

Data is born at the edge

Billions of phones & IoT devices constantly generate data

Data enables better products and smarter models

nes

Can data live at the edge?

Data processing is moving on device:

- Improved latency
- Works offline
- Better battery life
- Privacy advantages

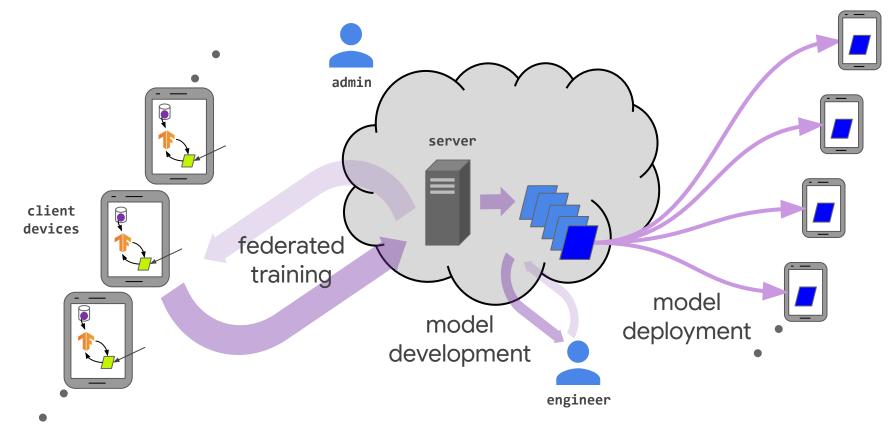
E.g., on-device inference for mobile keyboards and cameras.

What is federated learning?

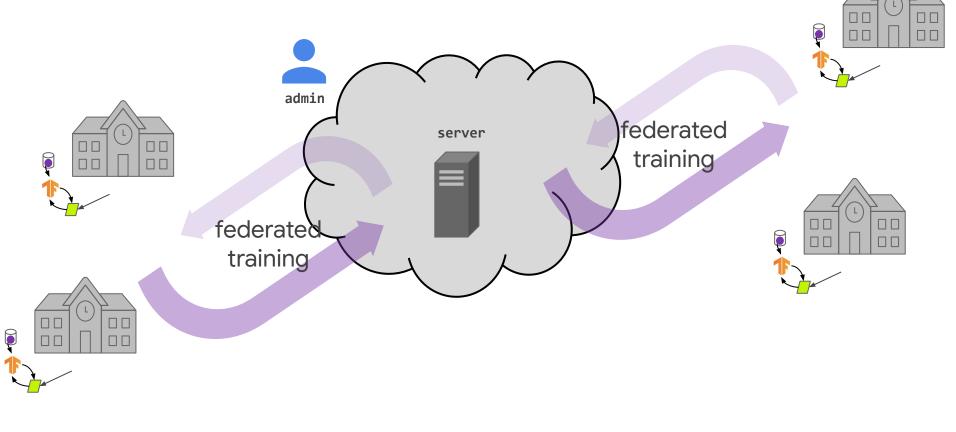
Federated learning is a machine learning setting where multiple entities (clients) collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective.

working definition proposed in Advances and Open Problems in Federated Learning (arxiv/1912.04977)

Cross-device federated learning



Cross-silo federated learning



Characteristics of the federated learning setting

	Datacenter distributed learning	Cross-silo federated learning	Cross-device federated learning	
Setting	Training a model on a large but "flat" dataset. Clients are compute nodes in a single cluster or datacenter.	Training a model on siloed data. Clients are different organizations (e.g., medical or financial) or datacenters in different geographical regions.	The clients are a very large number of mobile or IoT devices.	
Data distribution	Data is centrally stored, so it can be shuffled and balanced across clients. Any client can read any part of the dataset.	Data is generated locally and remains decentralized. Each client stores its own data and cannot read the data of other clients. Data is not independently or identically distributed.		
Orchestration	Centrally orchestrated.	A central orchestration server/service organizes the training, but never sees raw data.		
Wide-area communication	None (fully connected clients in one datacenter/cluster).	Hub-and-spoke topology, with the hub representing a coordinating service provider (typically without data) and the spokes connecting to clients.		
Data availability	Il clients are almost always available.		Only a fraction of clients are available at any one time, often with diurnal and other variations.	
Distribution scale	Typically 1 - 1000 clients.	Typically 2 - 100 clients.	Massively parallel, up to 10 ¹⁰ clients.	

Characteristics of the federated learning setting

	Datacenter distributed learning	Cross-silo federated learning	Cross-device federated learning
Addressability	Each client has an identity or name that allows the system to access it specifically.		Clients cannot be indexed directly (i.e., no use of client identifiers)
Client statefulness	Stateful each client may participate in each round of the computation, carrying state from round to round.		Generally stateless each client will likely participate only once in a task, so generally we assume a fresh sample of never before seen clients in each round of computation.
Primary bottleneck	Computation is more often the bottleneck in the datacenter, where very fast networks can be assumed.	Might be computation or communication.	Communication is often the primary bottleneck, though it depends on the task. Generally, federated computations uses wi-fi or slower connections.
Reliability of clients	Relatively few failures.		Highly unreliable 5% or more of the clients participating in a round of computation are expected to fail or drop out (e.g., because the device becomes ineligible when battery, network, or idleness requirements for training/computation are violated).
Data partition axis	Data can be partitioned / re-partitioned arbitrarily across clients.	Partition is fixed. Could be example-partitioned (horizontal) or feature-partitioned (vertical).	Fixed partitioning by example (horizontal).

Federated learning vs fully decentralized learning

	Federated learning	Fully decentralized (peer-to-peer) learning
Orchestration	A central orchestration server/service organizes the training, but never sees raw data.	No centralized orchestration.
Wide-area communication pattern	Hub-and-spoke topology, with the hub representing a coordinating service provider (typically without data) and the spokes connecting to clients.	Peer-to-peer topology.

Federated beyond learning

Beyond learning: federated analytics

Federated analytics is the practice of applying data science methods to the analysis of raw data that is stored locally on users' devices. Like federated learning, it works by running local computations over each device's data, and only making the aggregated results — and never any data from a particular device — available to product engineers. Unlike federated learning, however, federated analytics aims to support basic data science needs.

> *definition proposed in* https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html

Federated analytics

- Federated histograms over closed sets
- Federated heavy hitters discovery over open sets
- Federated density of vector spaces
- Federated selection of random data subsets
- Federated SQL?
- etc...

Federated heavy hitters (frequent item) discovery

= "The **moon** is full, the sky full of stars."

= "The full **moon** is two days before Halloween this month."

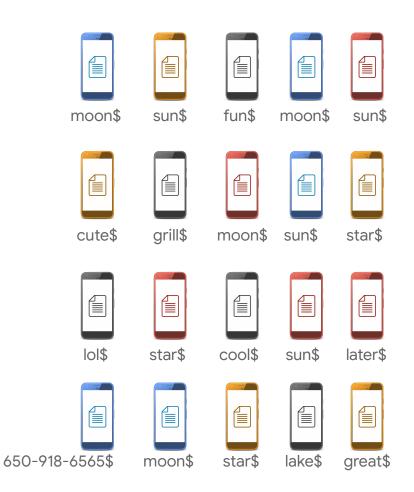
= "You see the **moon** instead of how dark the night is."

We are going to focus on words and assume each device has a single word - both assumptions can be relaxed

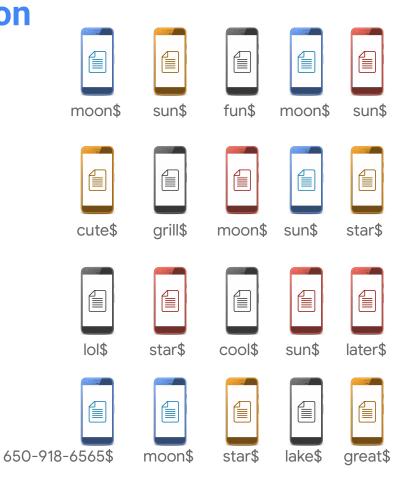
The TrieHH Algorithm

Algorithm via example

- n = 20, each user has a single word
- "moon" and "sun" appear 4 times
- "star" appears 3 times
- "\$" denotes end of word



Round 1: random device selection

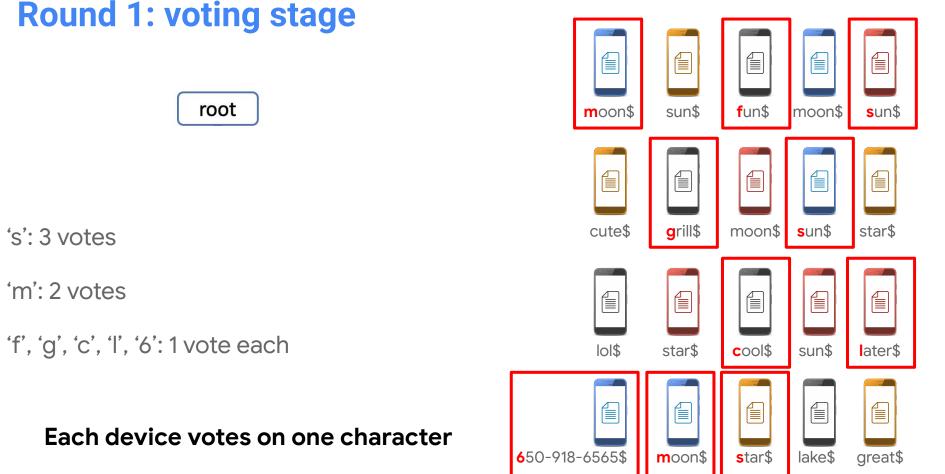


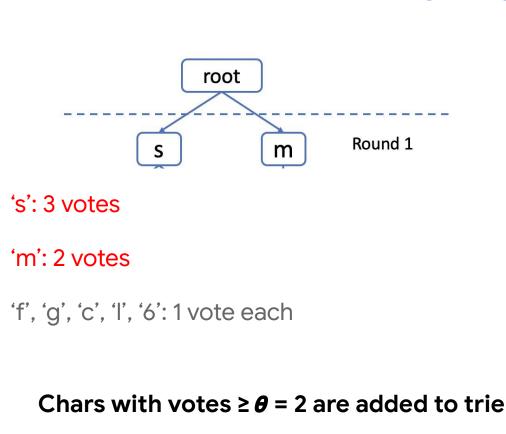
root

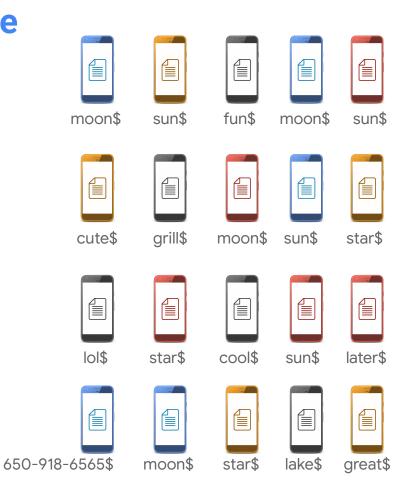
Randomly select m = 10 devices at random

Round 1: random device selection

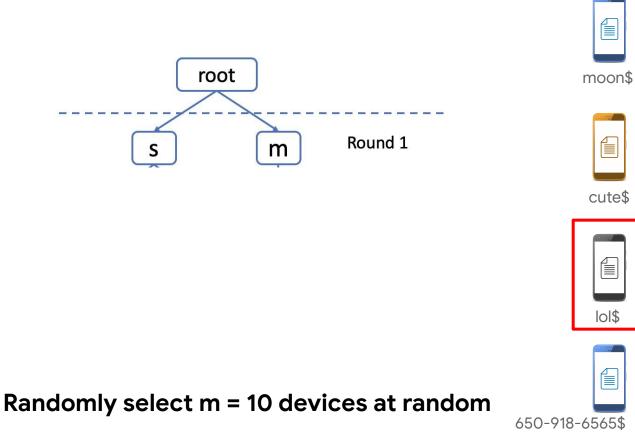
root







Round 1: vote thresholding stage



sun\$

star\$

later\$

great\$

moon\$

sun\$

sun\$

lake\$

sun\$

grill\$

star\$

moon\$

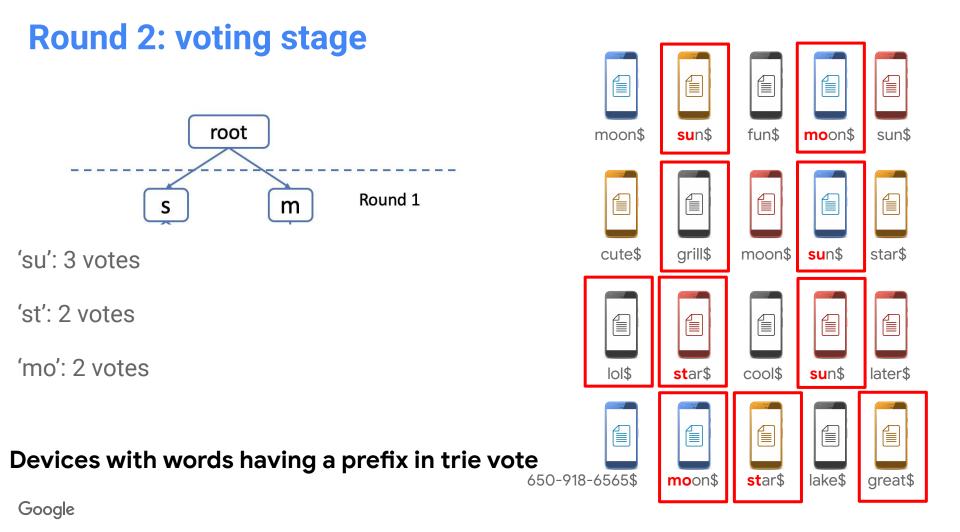
fun\$

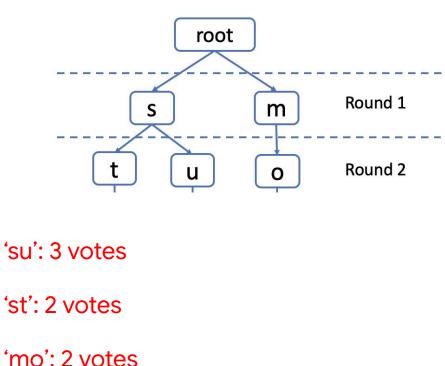
moon\$

cool\$

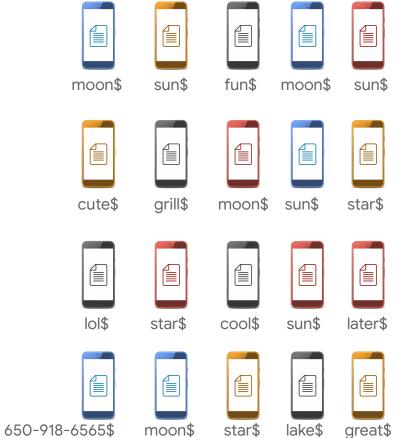
star\$

Round 2: random device selection

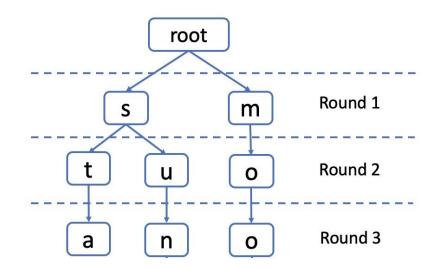


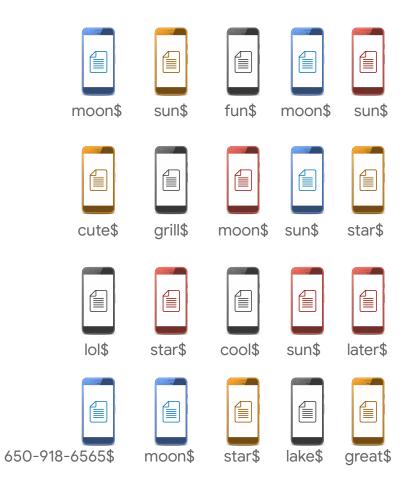


Round 2: vote thresholding stage

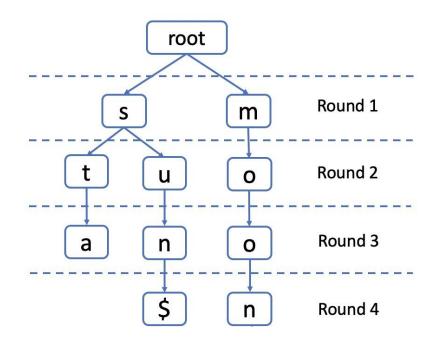


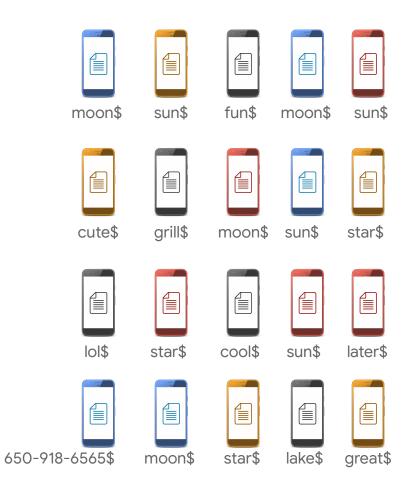
At the end of round 3



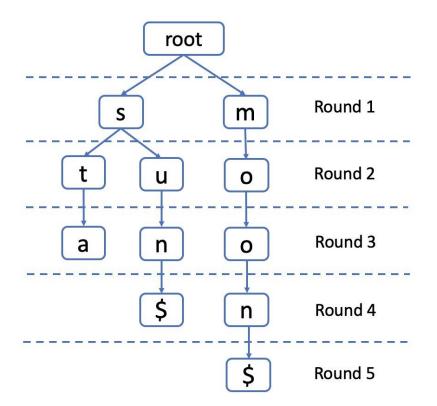


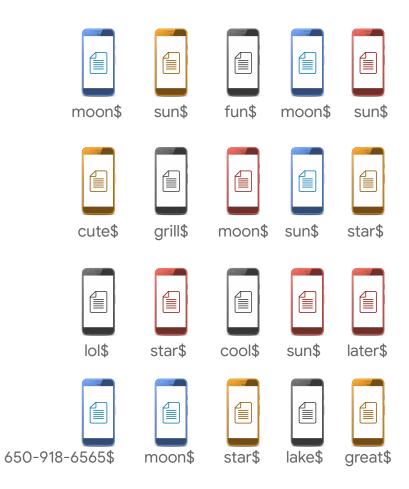
At the end of round 4



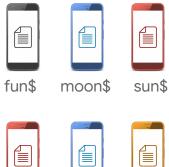


At the end of round 5



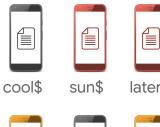


TrieHH



sun\$

star\$



star\$

moon\$

Ê

great\$

Algorithm Input: List of strings *Output:* A trie containing popular subsequences

Key Idea

Interactively build a trie data structure that keeps track of popular prefixes. Aggregate votes on single character extensions to existing prefixes in the trie. Threshold the counts to ensure that you are only keeping track of popular prefixes.

Paper: Federated Heavy Hitters Discovery with Differential Privacy (TPDP19, AISTATS2020)

Inherent strong privacy guarantees

TrieHH algorithm is differentially private!

- Structural k-anonymity
- User-level (epsilon, delta) central DP
- Great privacy-utility trade-offs
- Limited information exposed to server

Table 1: Choices of θ and γ to achieve $\varepsilon = 2$ in two cases: $\delta \leq \frac{1}{300n}$ and $\delta \leq \frac{1}{n^2}$.

	L = 10			
n	$\delta \leq \frac{1}{300n}$		$\delta \leq \tfrac{1}{n^2}$	
	θ	γ	θ	γ
10^{4}	10	1.81	12	1.51
10^{5}	11	5.21	14	4.09
10^{6}	12	15.10	15	12.08
10^{7}	13	44.09	17	33.71

Zhu, Kairouz et al. Federated Heavy Hitter Discovery with Differential Privacy. TPDP19, AISTATS2020.

Out-of-vocab⁽¹⁾ **experiments on Sentiment140**

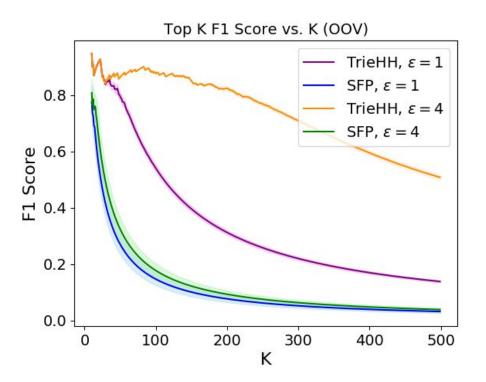


Table 2. Comparison between SFP and TrieHH of recall at K =50 and δ = 1/n².

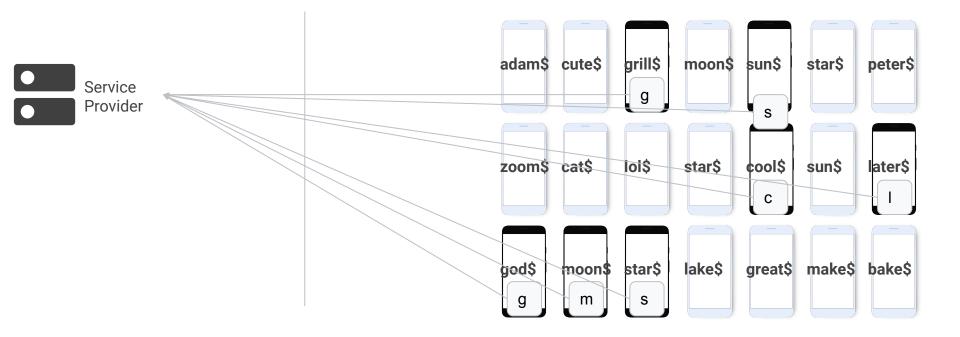
	$^{(3)}\varepsilon = 1$		$\varepsilon = 4$		
	Recall	Prec	Recall	Prec	
TrieHH	0.65	1	0.76	1	
$SFP^{(2)}(20)$	0.17	0.853	0.19	0.867	
SFP (80)	0.25	0.494	0.325	0.456	

(1) Dictionary contains over 260k words. After removing dictionary words, we lose over 160k users (2) SFP is an algorithm by Apple for heavy hitter discovery with local DP

Google (3) SFP's local epsilon is amplified to a central (epsilon, delta) for a fair comparison

Weaknesses of TrieHH

Linking devices to per-round character extensions

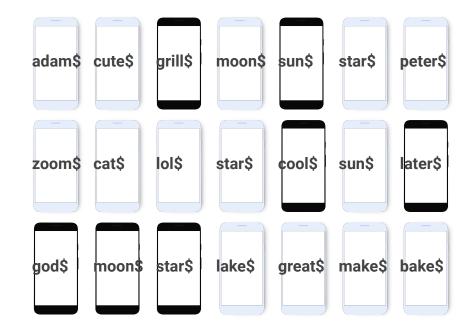


The server can link contributions (character extensions) to devices

Learning votes on unpruned edges

DP & k-anonymity properties hold with respect to the analyst (not the server!)

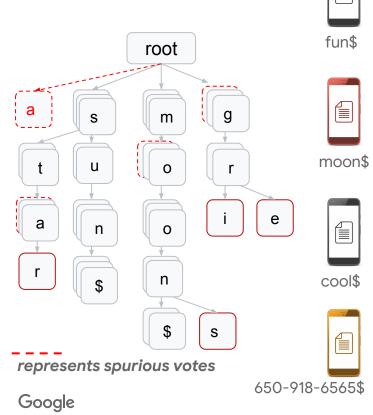
Uniform random device selection



DP holds only when server can sample uniformly at random from the entire population

Hardened TrieHH

Hardened TrieHH



Ê fun\$ sun\$ moon\$

Ē Ē

sun\$ star\$

sun\$ later\$

Algorithm *Input*: List of strings *Output:* A trie containing popular subsequences

Key Idea

Interactively build a trie data structure that keeps track of popular prefixes. Use **SecAgg** to aggregate **noisy votes** on single character extensions to existing prefixes in the trie. Threshold the counts to ensure that you are only keeping track of "popular" prefixes.

Privacy

Per-round securely aggregated noisy votes are automatically differentially private.

Advances and Open Problems in Federated Learning

Peter Kairouz^{7*} H. Brendan McMahan^{7*} Brendan Avent²¹ Aurélien Bellet9 Mehdi Bennis¹⁹ Arjun Nitin Bhagoji¹³ Keith Bonawitz⁷ Zachary Charles⁷ Graham Cormode²³ Rachel Cummings⁶ Rafael G.L. D'Oliveira¹⁴ David Evans²² Josh Gardner²⁴ Salim El Rouayheb¹⁴ Zachary Garrett⁷ Badih Ghazi⁷ Marco Gruteser7,14 Adrià Gascón⁷ Phillip B. Gibbons² Zaid Harchaoui²⁴ Chaoyang He²¹ Zhouyuan Huo²⁰ Lie He⁴ Martin Jaggi⁴ Ben Hutchinson⁷ Justin Hsu²⁵ Tara Javidi¹⁷ Gauri Joshi² Aleksandra Korolova²¹ Mikhail Khodak² Jakub Konečný⁷ Farinaz Koushanfar¹⁷ Sanmi Koyejo7,18 Yang Liu¹² Prateek Mittal¹³ Tancrède Lepoint⁷ Ayfer Özgür¹⁵ Rasmus Pagh^{7,10} Mehryar Mohri⁷ Richard Nock1 Hang Qi⁷ Daniel Ramage⁷ Ramesh Raskar¹¹ Mariana Raykova⁷ Dawn Song¹⁶ Weikang Song⁷ Sebastian U. Stich⁴ Ziteng Sun³ Ananda Theertha Suresh7 Florian Tramèr¹⁵ Praneeth Vepakomma¹¹ Jianyu Wang² Sen Zhao⁷ Han Yu¹² Li Xiong⁵ Zheng Xu⁷ Qiang Yang⁸ Felix X. Yu⁷

¹Australian National University, ²Carnegie Mellon University, ³Cornell University,
⁴École Polytechnique Fédérale de Lausanne, ⁵Emory University, ⁶Georgia Institute of Technology,
⁷Google Research, ⁸Hong Kong University of Science and Technology, ⁹INRIA, ¹⁰IT University of Copenhagen,
¹¹Massachusetts Institute of Technology, ¹²Nanyang Technological University, ¹³Princeton University,
¹⁴Rutgers University, ¹⁵Stanford University, ¹⁶University of California Berkeley,
¹⁷ University of California San Diego, ¹⁸University of Illinois Urbana-Champaign, ¹⁹University of Oulu,
²⁰University of Pittsburgh, ²¹University of Southern California, ²²University of Virginia,
²³University of Warwick, ²⁴University of Washington, ²⁵University of Wisconsin–Madison

Abstract

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

Advances and Open Problems in FL 58 authors from 25 institutions

arxiv.org/abs/1912.04977

