
From Federated Learning to 
Federated Analytics

Peter Kairouz 
kairouz@

Building on the work of many

mailto:kairouz@google.com
https://federated.withgoogle.com/


Data is born at the edge

Billions of phones & IoT devices constantly generate data

Data enables better products and smarter models



Data processing is moving on device:
● Improved latency
● Works offline
● Better battery life
● Privacy advantages

E.g., on-device inference for mobile 
keyboards and cameras.

Can data live at the edge?



What is federated learning?



Federated learning

Federated learning is a machine learning setting where 
multiple entities (clients) collaborate in solving a machine 
learning problem, under the  coordination of a central server 
or service provider. Each client's raw data is stored locally and 
not exchanged or transferred; instead, focused updates 
intended for immediate aggregation are used to achieve the 
learning objective.

working definition proposed in 
Advances and Open Problems in Federated Learning (arxiv/1912.04977)

https://arxiv.org/abs/1912.04977


client
devices

server

engineer

model
deployment

federated 
training

model
development

Cross-device federated learning

admin



server

federated 
training

Cross-silo federated learning

admin

federated 
training



Characteristics of the federated learning setting
Datacenter distributed learning Cross-silo 

federated learning
Cross-device 

federated learning

Setting Training a model on a large but 
"flat" dataset. Clients are compute 
nodes in a single cluster or 
datacenter.

Training a model on siloed data. 
Clients are different organizations 
(e.g., medical or financial) or 
datacenters in different geographical 
regions.

The clients are a very large number of mobile 
or IoT devices.

Data distribution Data is centrally stored, so it can 
be shuffled and balanced across 
clients. Any client can read any 
part of the dataset.

Data is generated locally and remains decentralized.  Each client stores its own 
data and cannot read the data of other clients. Data is not independently or identically 
distributed.

Orchestration Centrally orchestrated. A central orchestration server/service organizes the training, but never sees raw data.

Wide-area 
communication 

None (fully connected clients in 
one datacenter/cluster).

Hub-and-spoke topology, with the hub representing a coordinating service provider 
(typically without data) and the spokes connecting to clients.

Data availability All clients are almost always available. Only a fraction of clients are available at any 
one time, often with diurnal and other 
variations.

Distribution scale Typically 1 - 1000 clients. Typically 2 - 100 clients. Massively parallel, up to 1010 clients.



Characteristics of the federated learning setting
Datacenter distributed learning Cross-silo 

federated learning
Cross-device 

federated learning

Addressability Each client has an identity or name that allows the system to access it 
specifically.

Clients cannot be indexed directly (i.e., no use 
of client identifiers) 

Client statefulness Stateful --- each client may participate in each round of the computation, 
carrying state from round to round. 

Generally stateless --- each client will likely 
participate only once in a task, so generally 
we assume a fresh sample of never before 
seen clients in each round of computation.

Primary bottleneck Computation is more often the 
bottleneck in the datacenter, where 
very fast networks can be 
assumed.

Might be computation or 
communication.

Communication is often the primary 
bottleneck, though it depends on the task. 
Generally, federated computations uses wi-fi 
or slower connections.

Reliability of clients Relatively few failures. Highly unreliable --- 5% or more of the clients 
participating in a round of computation are 
expected to fail or drop out (e.g., because the 
device becomes ineligible when battery, 
network, or idleness requirements for 
training/computation are violated).

Data partition axis Data can be partitioned / 
re-partitioned arbitrarily across 
clients.

Partition is fixed. Could be 
example-partitioned (horizontal) or 
feature-partitioned (vertical).

Fixed partitioning by example (horizontal).



Federated learning vs fully decentralized learning

Federated learning Fully decentralized 
(peer-to-peer) learning

Orchestration A central orchestration server/service organizes 
the training, but never sees raw data.

No centralized orchestration.

Wide-area 
communication pattern

Hub-and-spoke topology, with the hub 
representing a coordinating service provider 
(typically without data) and the spokes 
connecting to clients.

Peer-to-peer topology.



Federated beyond learning



Beyond learning: federated analytics

Federated analytics is the practice of applying data science methods to 
the analysis of raw data that is stored locally on users’ devices. Like 
federated learning, it works by running local computations over each 
device’s data, and only making the aggregated results — and never any 
data from a particular device — available to product engineers. Unlike 
federated learning, however, federated analytics aims to support basic 
data science needs. 

definition proposed in 
https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html



Federated analytics

● Federated histograms over closed sets
● Federated heavy hitters discovery over open sets
● Federated density of vector spaces
● Federated selection of random data subsets
● Federated SQL?
● etc...



=  “The moon is full, the sky full of stars.”

=  “The full moon is two days before Halloween this month.”

=  “You see the moon instead of how dark the night is.”

Federated heavy hitters (frequent item) discovery 

We are going to focus on words and assume each device has a single word - both 
assumptions can be relaxed 



The TrieHH Algorithm



moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

n = 20, each user has a single word

“moon” and “sun” appear 4 times

“star” appears 3 times

“$” denotes end of word

Algorithm via example



Randomly select m = 10 devices at random

moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

Round 1: random device selection



sun$

moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

Round 1: random device selection



‘s’: 3 votes

‘m’: 2 votes

‘f’, ‘g’, ‘c’, ‘l’, ‘6’: 1 vote each

Each device votes on one character

moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

Round 1: voting stage



Chars with votes ≥ 𝞱 = 2 are added to trie

‘s’: 3 votes

‘m’: 2 votes

‘f’, ‘g’, ‘c’, ‘l’, ‘6’: 1 vote each

moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

Round 1: vote thresholding stage



Randomly select m = 10 devices at random

moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

Round 2: random device selection



Devices with words having a prefix in trie vote

‘su’: 3 votes

‘st’: 2 votes

‘mo’: 2 votes

moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

Round 2: voting stage



‘su’: 3 votes

‘st’: 2 votes

‘mo’: 2 votes

moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

Round 2: vote thresholding stage



moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

At the end of round 3



moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

At the end of round 4



moon$ sun$

moon$

moon$

moon$ sun$

sun$

sun$

star$

star$

star$

fun$

cute$

650-918-6565$

cool$lol$

lake$

grill$

later$

great$

At the end of round 5



TrieHH

Algorithm
Input: List of strings 
Output: A trie containing popular subsequences 

Key Idea
Interactively build a trie data structure that keeps track of 
popular prefixes. Aggregate votes on single character 
extensions to existing prefixes in the trie. Threshold the 
counts to ensure that you are only keeping track of popular 
prefixes. 

Paper: Federated Heavy Hitters Discovery with 
Differential Privacy (TPDP19, AISTATS2020)

moon$

moon$ sun$

sun$

sun$

star$

star$

fun$

650-918-6565$

cool$ later$

great$

ms g

root

u ot r

a n o

$

$

gmmss

t

a

ru

nn

$$

$

oo

o

nn

http://go/triehh
http://go/triehh


TrieHH algorithm is differentially private! 

Inherent strong privacy guarantees

Zhu, Kairouz et al. Federated Heavy 
Hitter Discovery with Differential 
Privacy. TPDP19, AISTATS2020.

● Structural k-anonymity

● User-level (epsilon, delta) central DP

● Great privacy-utility trade-offs

● Limited information exposed to server



Table 2. Comparison between SFP and 
TrieHH of recall at K =50 and δ = 1/n2.

Out-of-vocab(1) experiments on Sentiment140

(2)

(1) Dictionary contains over 260k words. After removing dictionary words, we lose over 160k users
(2) SFP is an algorithm by Apple for heavy hitter discovery with local DP
(3) SFP’s local epsilon is amplified to a central (epsilon, delta) for a fair comparison

(3)

https://arxiv.org/pdf/1903.02837.pdf


Weaknesses of TrieHH 



cute$ grill$adam$ peter$moon$ sun$ star$

cat$ lol$zoom$ later$star$ cool$ sun$

moon$ star$god$ bake$lake$ great$ make$

g
s

c l

g m s

Service 
Provider

Linking devices to per-round character extensions

The server can link contributions (character extensions) to devices



ms g

root

u ot r

a n o

$ n

$

ms g

root

u ot r

a n o

$

$

Trie seen by analyst          versus   Trie seen by server

i e

gmmss

t

r

a

ru

nn

$$

$

oo

o

s

nn

Learning votes on unpruned edges

DP & k-anonymity properties hold with respect to the analyst (not the server!) 



cute$ grill$adam$ peter$moon$ sun$ star$

cat$ lol$zoom$ later$star$ cool$ sun$

moon$ star$god$ bake$lake$ great$ make$

Service 
Provider

Uniform random device selection

DP holds only when server can sample uniformly at random from the entire population 



Hardened TrieHH 



represents spurious votes

g

g

g

Algorithm
Input: List of strings 
Output: A trie containing popular subsequences 

Key Idea
Interactively build a trie data structure that keeps track of 
popular prefixes. Use SecAgg to aggregate noisy votes on 
single character extensions to existing prefixes in the trie. 
Threshold the counts to ensure that you are only keeping 
track of “popular” prefixes. 

Privacy
Per-round securely aggregated noisy votes are 
automatically differentially private.  

moon$

moon$ sun$

sun$

sun$

star$

star$

fun$

650-918-6565$

cool$ later$

great$

ms g

root

u ot r

a n o

$

$

i e

gmmss

t

r

a

ru

nn

$$

$

oo

o

s

nn

a

Hardened TrieHH



Confidential + Proprietary

Advances and Open Problems in FL

58 authors from 25 institutions

arxiv.org/abs/1912.04977

https://arxiv.org/abs/1912.04977

