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The Promise of the Data Lake

1. Collect 2. Storeitallin 3. Data Science &
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- Recommendation Engines

« Risk, Fraud Detection

- loT & Predictive Maintenance
- Genomics & DNA Sequencing
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Garbage In Garbage Stored Garbage Out
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What does a typical
data lake project look like?
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Evolution of a Cutting-Edge Data Lake
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Challenge #1: Historical Queries?
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Challenge #2: Messy Data?
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Challenge #3: Mistakes and Failures?
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Challenge #4: Updates?
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Wasting Time & Money
Solving Systems Problems

Instead of Extracting Value From Data



Data Lake Distractions

V1
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No atomicity means failed production jobs
leave data in corrupt state requiring tedious
recovery

No quality enforcement creates inconsistent
and unusable data

No consistency / isolation makes it almost
impossible to mix appends and reads, batch and
streaming



Let’s try it instead with
DELTA LAKE



Challenges of the Data Lake

1 A-arch
Events §€kafka 1 SprK 2 Validation
1 Streaming 3 Reprocessing
SpQrK Analytics B Updates
2
3 4
Spark:

Data Lake 4 Al & Reporting



DELTA LAKE Architecture
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The 4\ DELTA LAKE Architecture
=

93 kafka

% Streaming
% Kinesis @ Analytics
Data Lake % Al & Reporting

§3 kafka

Focus on your data flow, instead of worrying about failures.



The 4\ DELTA LAKE Architecture
=

93 kafka

% Streaming
% Kinesis @ Analytics
Data Lake % Al & Reporting

§3 kafka

Store petabytes of data without worries of lock-in. Growing
community including Presto, Spark and more.



The 4\ DELTA LAKE Architecture
=

93 kafka

% Streaming
% Kinesis @ Analytics
Data Lake % Al & Reporting

§3 kafka

AAAAAA

Unifies Streaming / Batch. Convert existing jobs with minimal
modifications.



The DELTA LAKE

*Data Quality Levels *
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Delta Lake allows you to incrementally improve the
quality of your data until it is
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DELTA LAKE
Bronze Gold
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

*Dumping ground for raw data
*Often with long retention (years)
*Avoid error-prone parsing

Streaming
Analytics
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§3 kafka
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DELTA LAKE
Bronze Gold :
Streaming
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Intermediate data with some cleanup applied.
Queryable for easy debugging!
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DELTA LAKE
Bronze Gold :
Streaming
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Clean data, ready for consumption.

Read with Spark or Presto*
*Coming Soon
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DELTA LAKE
Bronze Gold :
Streaming
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Streams move data through the Delta Lake
*Low-latency or manually triggered
*Eliminates management of schedules and jobs
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DELTA LAKE
Bronze Gold :
Streaming
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Delta Lake also supports batch jobs
and standard DML

 Retention
« Corrections *DML released in 0.3.0

* GDPR
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Easy to recompute when business logic changes:
* Cleartables
* Restart streams



Who is using £\ beELTA LAKE ?



Used by 3000+ of organizations world wide

> 2+ exabyte processed last month alone
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SESSIONIZATION WITH DELTA LAKE

Single Job
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Improved reliability:
Petabyte-scale jobs

10x lower compute:
640 instances to 64!

Simpler, faster ETL:
84 jobs = 3 jobs
halved data latency
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How do | use £\ peLTA LAKE ?



Get Started with Delta using Spark APIs
Add Spark Package Maven

<dependency>

pyspark --packages io.delta:delta-core_2.12:0.1.0 <groupld>io.delta</groupld>

<artifactld>delta-core_2.12</artifactld>

bin/spark-shell --packages io.delta:delta-core_2.12:0.1.0 <version>0.1.0</version>
</dependency>
Instead of parquet... o 5|mp[y say
dataframe dataframe
.write .write
.format ("parquet") .format (" ")

.save ("/data") .save ("/data")



How does £\ peLta LAKE WOrk?



Delta On Disk

my table/
_delta log/
I:e@ee@ .json
©0001.json
date=2019-01-01/
l»file-l.parquet



Version N = Version N-1 + Actions

- name, schema, partitioning, etc
— adds a file (with optional statistics)
- removes a file

Current Metadata, List of Files



Implementing Atomicity

Changes to the table
are stored as
ordered, atomic
units called commits 000001 . json

000000 . json



Ensuring Serializablity

Need to agree on the
order of changes, even
when there are multiple

writers. 000000 . json
User 1 User 2

©00001. json
©00002. json



Solving Conflicts Optimistically

=

Record start version
Record reads/writes
Attempt commit

If someone else wins,
check if anything you
read has changed.
Try again.

User1l

«—— 000000. json — User 2
©0001. json
000002 . json



Handling Massive Metadata

Large tables can have millions of files in them! How do we scale
the metadata? Use Spark for scaling!

Checkpoint

AAAAAAAAAAAA



3uild your own
atl
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Delta Lake Connectors

Standardize your big data storage with an open format accessible from various tools

/ Amazon Redshift
. |I|IIII Amazon Athena




Delta Lake Partners and Providers

More and more partners and providers are jumping in and working with Delta Lake
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Users of Delta Lake
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