Data Reliability for
Data Lakes

ZAN

DELTA LAKE

Michael Armbrust
W @michaelarmbrust

The Promise of the Data Lake

1. Collect 2. Storeitallin 3. Data Science &
Everything the Data Lake Machine Learning

s

0@
3 at][]

- Recommendation Engines

« Risk, Fraud Detection

- loT & Predictive Maintenance
- Genomics & DNA Sequencing

%

Garbage In Garbage Stored Garbage Out

ZAN

What does a typical
data lake project look like?

Evolution of a Cutting-Edge Data Lake

\ APACHE
Events —— §8kqfka I ‘l L H
/
Streaming
Analytics

= -

Data Lake Al & Reporting

Evolution of a Cutting-Edge Data Lake

\ APACHE QN o APACHE &
Events ; §8 kafka.u. Spqu(w] ‘I L1 H
Streaming
Analytics
Data Lake Al & Reporting

Challenge #1: Historical Queries?

cvents —— &Bkaifka wr- SEEK. — |l
1 J\Z Streaming
AAAAAA Analyti
Spark R
— | spak —
Data Lake Al & Reporting

1) A-arch

Challenge #2: Messy Data?

Events —— §8 katka —@— pQﬂ(
D T
o
spak’ —— 5

Data Lake Al & Reporting

ul

Streaming
Analytics

1) A-arch

2 Validation

Challenge #3: Mistakes and Failures?

1) A-arch

\ APACHE @A o APACHE &
Events ; §8kafka 1 pC)l'Kw I ‘I I H 2) Validation

ll J Streaming (3) Reprocessing

AAAAAA J\Z l_\féo Analytics

Data Lake Al & Reporting

Challenge #4: Updates?

_ e 1 A-arch
Events —/—> §8kafka—1* prK I ‘I I H 2) Validation
1[1 Streaming (3) Reprocessing

AAAAAA <"Z 6 Analytics

_S ork 4 Updates
‘iffi:\ pl 2 .

Data Lake EEEEE Al & Reporting

Wasting Time & Money
Solving Systems Problems

Instead of Extracting Value From Data

Data Lake Distractions

V1

J1

No atomicity means failed production jobs
leave data in corrupt state requiring tedious
recovery

No quality enforcement creates inconsistent
and unusable data

No consistency / isolation makes it almost
impossible to mix appends and reads, batch and
streaming

Let’s try it instead with
DELTA LAKE

Challenges of the Data Lake

1 A-arch
Events §€kafka 1 SprK 2 Validation
1 Streaming 3 Reprocessing
SpQrK Analytics B Updates
2
3 4
Spark:

Data Lake 4 Al & Reporting

DELTA LAKE Architecture

=
=
=
=

(0 (0 @t

=Pl
=
-

l

Streaming
Analytics

T

Al & Reporting

The 4\ DELTA LAKE Architecture
=

93 kafka

% Streaming
% Kinesis @ Analytics
Data Lake % Al & Reporting

§3 kafka

Focus on your data flow, instead of worrying about failures.

The 4\ DELTA LAKE Architecture
=

93 kafka

% Streaming
% Kinesis @ Analytics
Data Lake % Al & Reporting

§3 kafka

Store petabytes of data without worries of lock-in. Growing
community including Presto, Spark and more.

The 4\ DELTA LAKE Architecture
=

93 kafka

% Streaming
% Kinesis @ Analytics
Data Lake % Al & Reporting

§3 kafka

AAAAAA

Unifies Streaming / Batch. Convert existing jobs with minimal
modifications.

The DELTA LAKE

*Data Quality Levels *

§8 kafka
Bronze Gold ot .

b ase s reaming
< Kinesis @ E et
Data Lake . R:ei\’?ilon FiltAered, Cliacrjled Bxsinreess;ee\;el

mente .
...... 5 ug 58res Al & Reporting
Spark
Quality

Delta Lake allows you to incrementally improve the
quality of your data until it is

§3 kafka

q'ﬁ%‘ Kinesis

csv,
JSON, TXT..

Data Lake

nnnnnn

DELTA LAKE
Bronze Gold
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

*Dumping ground for raw data
*Often with long retention (years)
*Avoid error-prone parsing

Streaming
Analytics

Al & Reporting

§3 kafka

q'ﬁ%‘ Kinesis

csv,
JSON, TXT..

Data Lake

nnnnnn

DELTA LAKE
Bronze Gold :
Streaming
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Intermediate data with some cleanup applied.
Queryable for easy debugging!

§3 kafka

q'ﬁ%‘ Kinesis

csv,
JSON, TXT..

Data Lake

nnnnnn

DELTA LAKE
Bronze Gold :
Streaming
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Clean data, ready for consumption.

Read with Spark or Presto*
*Coming Soon

§3 kafka

% Kinesis

csv,
JSON, TXT..

Data Lake

nnnnnn

DELTA LAKE
Bronze Gold :
Streaming
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Streams move data through the Delta Lake
*Low-latency or manually triggered
*Eliminates management of schedules and jobs

§3 kafka

q'ﬁ%‘ Kinesis

csv,
JSON, TXT..

Data Lake

nnnnnn

DELTA LAKE
Bronze Gold :
Streaming
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Delta Lake also supports batch jobs
and standard DML

 Retention
« Corrections *DML released in 0.3.0

* GDPR

§3 kafka

q'ﬁ%‘ Kinesis

csv,
JSON, TXT..

Data Lake

nnnnnn

DELTA LAKE
Bronze Gold :
(~ Streaming
Raw Filtered, Cleaned Business-level
Ingestion Augmented Aggregates

Al & Reporting

Easy to recompute when business logic changes:
* Cleartables
* Restart streams

Who is using £\ beELTA LAKE ?

Used by 3000+ of organizations world wide

> 2+ exabyte processed last month alone

2
COMCAST Wm

NBCUNIVERSAL o&h e e,
CISCO. s uig

--------- Barracuda

viacom TuIner NVIDIA.

&R
COMCAST

SESSIONIZATION WITH DELTA LAKE

Single Job
ok 1 Auto Optimize 54 Jh.;zu::mes ato Optimize ok 2 auto Optirmize
Data Ingest '/';1 Sessionize C Enrich & Optimize f'f:"\l
B By Sy By s Er e
iﬁ Streaming ..é. C:.‘éx A én A e éns
Enakble Random Prefives Enable Random Prefies
Y e a0 e — = = o= .
e CT U
sweaming [L F= 1 O
CONE e T e
Mo more Key
management
FASTER QUERIES, RELIABLE PIPELINES, 10X REDUCTION IN COMPUTE! o W% -

Yy

Improved reliability:
Petabyte-scale jobs

10x lower compute:
640 instances to 64!

Simpler, faster ETL:
84 jobs = 3 jobs
halved data latency

27

How do | use £\ peLTA LAKE ?

Get Started with Delta using Spark APIs
Add Spark Package Maven

<dependency>

pyspark --packages io.delta:delta-core_2.12:0.1.0 <groupld>io.delta</groupld>

<artifactld>delta-core_2.12</artifactld>

bin/spark-shell --packages io.delta:delta-core_2.12:0.1.0 <version>0.1.0</version>
</dependency>
Instead of parquet... o 5|mp[y say
dataframe dataframe
.write .write
.format ("parquet") .format (" ")

.save ("/data") .save ("/data")

How does £\ peLta LAKE WOrk?

Delta On Disk

my table/
_delta log/
I:e@ee@ .json
©0001.json
date=2019-01-01/
l»file-l.parquet

Version N = Version N-1 + Actions

- name, schema, partitioning, etc
— adds a file (with optional statistics)
- removes a file

Current Metadata, List of Files

Implementing Atomicity

Changes to the table
are stored as
ordered, atomic
units called commits 000001 . json

000000 . json

Ensuring Serializablity

Need to agree on the
order of changes, even
when there are multiple

writers. 000000 . json
User 1 User 2

©00001. json
©00002. json

Solving Conflicts Optimistically

=

Record start version
Record reads/writes
Attempt commit

If someone else wins,
check if anything you
read has changed.
Try again.

User1l

«—— 000000. json — User 2
©0001. json
000002 . json

Handling Massive Metadata

Large tables can have millions of files in them! How do we scale
the metadata? Use Spark for scaling!

Checkpoint

AAAAAAAAAAAA

3uild your own
atl

Delta Lake

Delta Lake Connectors

Standardize your big data storage with an open format accessible from various tools

/ Amazon Redshift
. |I|IIII Amazon Athena

Delta Lake Partners and Providers

More and more partners and providers are jumping in and working with Delta Lake

@ Google Dataproc d ATTUNITY
Privacera ’

+i+ J
wytableau

(‘ Informatica
N
Streamsets
&

(
“) WANDisco Q Qlik 1
A

Users of Delta Lake

. JiM
Te il e ciena 2
eneen l Ali%roup COMCAST VIBCOM clTH
& edmunds @databricks "ea“hdﬂf;ggg Booz | Allen | Hamilton® U Egg\é!swg CONDE NAST
Craw an £ Namel # 3 Usermind
TILTING PNINT Hill wCCOMs EVERQUOTE y

Education

w < split work @ wehkamp

DOLLAR SHAVE CLUB

