
Nick Schrock
Founder, Elementl

@schrockn

schrockn@elementl.com

Building For
The Data Application

Lifecycle

Dagster is a Data Orchestrator

Orchestrator: Manages and orchestrates the graph of

computations the comprise a data application.

Data: Metadata- and Data-Aware.

Any runtime, any compute environment, any storage.

Data Application

Graph of Functional Computations
That Produce and Consume Data Assets

ML Pipeline

ETL

ELT

All are graphs of computations
that consume and produce

data assets

All components (except “ML Code” and “Serving”)
are common to all data applications

ML Pipeline

ETL

ELT

In fact they could be three
components of a broader,

single data application

Data applications are:

Multi

persona

tool

team

environment

This is
software engineering

The Data Application Lifecycle

Develop Test Deploy Operate

Develop Test Deploy Operate

> pip install dagster

- Solid: a functional unit of computation in

the orchestration graph

- Designed for reuse and testability

- Pipeline is a graph of solids

- Connected via data dependencies

> pip install dagit
&& dagit

DEMO

Data applications are no exception:
lots of configuration

- Schema over python dictionaries

- Self-describing

- High quality error messages

- Catch errors earlier

- Autocompleting YAML editor

dagster.config

Use Config To Make UI Demo Better

DEMO

Dagster Types

Gradual, Optional: Defaults to Any

Flexible: Typecheck is a arbitrary code.

Where does

this value

come from?

config!

DEMO

Develop Test Deploy Operate

Testing data applications
is uniquely challenging

Status Quo: Late Defect Detection

IntegrationUnit Staging ProductionLocal Dev

of defects by stage

Attainable Goal: Bend the Curve

IntegrationUnit Staging ProductionLocal Dev

of defects by stage

IntegrationUnit Staging ProductionLocal Dev

Cost of defect massively

increases at each stage

Moving defect detection earlier in the process

Order of magnitude improvement

in productivity and costs.

Pluggable System
(i.e. Dagster itself)

Pluggable Environment

Parameterized
Computations

Foundations of Testability

@resource

@solid

dagster.yaml

@resource

Resources and context are the way you separate your

business logic from your environment

Solids declare what resources they need

@resource

Which resource is provided depends on mode

DEMO

Develop Test Deploy Operate

Pluggable System
(i.e. Dagster itself)

Remember?

Key to both testing and flexible deployment

Database → Postgres

Intermediate Storage → S3

Execution Substrate →Celery + Kubernetes

Example deployment using helm:

FROM "python-3.7.8-slim"

RUN pip install \

dagster \

dagit \

dagster-k8s # … and others

ADD your_project .

Dockerfile

> docker push preso-dc-2020

dagit:

image:

repository: "dagster/preso-dc-2020"

tag: "latest"

pipeline_run:

image:

repository: "dagster/preso-dc-2020"

tag: "latest"

values.yaml

> helm install dagster helm/dagster -f /path/to/your/values.yaml

run_launcher:
module: dagster_celery_k8s
class: CeleryK8sRunLauncher
config:
dagster_home:
env: DAGSTER_HOME

instance_config_map:
env: DAGSTER_K8S_INSTANCE_CONFIG_MAP

postgres_password_secret:
env: DAGSTER_K8S_PG_PASSWORD_SECRET

broker: "pyamqp://test:test@dagster-rabbitmq:5672//"
backend: "amqp"

Additional Sections
run_storage: RDS postgres info
event_log_storage: ...
schedule_storage: ...
etc many pluggable sections

dagster.yaml (generated by helm)

Completely user pluggable

Dagit
(web)

Postgres S3

Worker

k8s job
per run

Worker

Worker

Redis
Queue

celery

k8s job
per step

Helm deploys this:

Scheduler

Develop Test Deploy Operate

Schedule

fn(time) → run_config

Scheduler

Asset Management

A solid yields a stream of events

AssetMaterialization: indicates an asset

has been created that will outlive computation

DEMO

The Data Application Lifecycle

Develop Test Deploy Operate

A generalized platform
Not just k8s + pandas!

https://github.com/dagster-io/dagster

Find the slack invite and say hi!

https://github.com/dagster-io/dagster

