
© 2019 Ververica

The Modern Stream Processor:
A View from Apache Flink
Tzu-Li (Gordon) Tai, Senior Software Engineer
Apache Flink PMC / Committer
@tzulitai

© 2018 data Artisans2

About me

● PMC / Committer at Apache Flink
○ Exactly-once streaming connectors (Kafka, Kinesis)
○ State-related things (evolvability of stateful streaming

applications, state backends, etc.)

● Software Engineer at Ververica
○ Work full-time developing open source for Apache Flink

© 2019 Ververica3

About Ververica

Original creators of
Apache Flink®

Complete Stream
Processing Infrastructure

© 2019 Ververica4

Powered by Apache Flink

© 2018 data Artisans5

What we will talk about

● What is stateful stream processing and how it has evolved over time

● Apache Flink’s take on stateful stream processing
○ Core features and internal designs that make it work

© 2019 Ververica

What is Stateful Stream Processing?

© 2018 data Artisans7

The traditional batch way ...

t

Batch
jobs

2017-06-14
01:00am

2017-06-14
00:00am

2017-06-13
11:00pm

2017-06-13
10:00pm

...

● Continuously
ingesting data

● Time-bounded
batch files

● Periodic batch
jobs

© 2018 data Artisans8

The traditional batch way ...

2017-06-14
01:00am

2017-06-14
00:00am

2017-06-13
11:00pm

2017-06-13
10:00pm

● Consider computing
conversion metric
(# of A → B per hour)

● What if the conversion
crossed time
boundaries?
→ carry intermediate
results to next batch

● What if events come
out of order?

intermediate
state

t

...

t

© 2018 data Artisans9

The ideal way

 accumulate state

● View of the “history” of the

input stream

● counters, in-progress
windows

● parameters of incrementally
trained ML models, etc.

● State influences the output

● Output depending on
notions of time

● Outputs when results
are complete.

long running computation

© 2018 data Artisans10

The ideal way

Stateful Stream Processor
that handles

consistently, robustly, and efficiently

Large
Distributed State

Time / Order /
Completeness

● Stateful stream processing as
a new paradigm to
continuously process
continuous data

● Produce accurate results

● Results available in real-time
is only a natural consequence
of the model

servicing

© 2019 Ververica

Apache Flink’s take on
Stateful Stream Processing

© 2018 data Artisans12

Stream Processing

Your
Code

process records
one-at-a-time

...

Long running computation, on an endless stream of input

© 2018 data Artisans13

Distributed Stream Processing

Your
Code

...

Your
Code

Your
Code

● partitions input streams by
some key in the data

● distributes computation
across multiple instances

● Each instance is responsible
for some key range

© 2018 data Artisans14

Stateful Stream Processing

qwe
Your
Code

...

Your
Code

Your
Code

Process

update local
variables/structures

var x = …

if (condition(x)) {
 …
}

© 2018 data Artisans15

External State (with Stateless Stream Processors)

Source

Source

Offset

KV
Store

...

...

Sink

External
State Store

© 2018 data Artisans16

External State v.s. Internal State

User code

State

External State

● State in a separate data store
● Usually much slower due to remote

read / writes
● Fault-tolerance / scalability is

responsibility
of the external storage

● Not that easy to get exactly-once
guarantees

© 2018 data Artisans17

External State v.s. Internal State

Internal State

● State within the stream processor
● Local read / writes
● Snapshots to stable store (DFS)
● Always exactly-once consistent
● Stream processor needs to handle

large state / rescaling / fault-tolerance

User code

State

Stable Storage

periodic snapshot

© 2018 data Artisans18

Fault Tolerance for Internal State

Fault tolerance concerns for a stateful stream processor:

● How to ensure exactly-once semantics for the state?

© 2018 data Artisans19

Fault tolerance: simple case

User code...

local state

periodically snapshot the
state + event log position

© 2018 data Artisans20

Fault tolerance: simple case

User code...

local state

periodically snapshot the
state + event log position

© 2018 data Artisans21

Fault tolerance: simple case

User code...

© 2018 data Artisans22

Fault tolerance: simple case

User code...

local state
(restored)

Recovery: restore
snapshot and replay

events since snapshot

replay events

© 2018 data Artisans23

Fault Tolerance for Internal State

Fault tolerance concerns for a stateful stream processor:

● How to ensure exactly-once semantics for the state?

● How to create consistent snapshots of distributed embedded state?

● More importantly, how to do it efficiently without abrupting computation?

© 2018 data Artisans24

Fault tolerance: distributed state

... Your
Code

Your
Code

Your
Code

State

State

State

Your
Code

State

● Consistent snapshotting:

© 2018 data Artisans25

Fault tolerance: distributed state

... Your
Code

Your
Code

Your
Code

State

State

State

Your
Code

State

Consistent view (snapshot)

© 2018 data Artisans26

Fault tolerance: distributed state

... Your
Code

Your
Code

Your
Code

State

State

State

Your
Code

State

checkpointed
state

checkpointed
state

checkpointed
state

File System
Checkpoint

● Consistent snapshotting:

© 2018 data Artisans27

Fault tolerance: distributed state

... Your
Code

Your
Code

Your
Code

State

State

State

Your
Code

State

checkpointed
state

checkpointed
state

checkpointed
state

File System
Restore

● Recover all local state
● Reset position in input stream

© 2018 data Artisans28

Distributed Snapshots

Coordination via “asynchronous checkpoint barriers”,
injected into the streams

© 2018 data Artisans29

Distributed Snapshots

stateful
operation

source

State

State

© 2018 data Artisans30

Distributed Snapshots

stateful
operation

source

State

State

Inject checkpoint
barrierTrigger checkpoint

Queue pos Operator #1 Operator #2

offset #x N/A N/A

Snapshot

© 2018 data Artisans31

Distributed Snapshots

stateful
operation

source

State

State

Trigger checkpoint

barriers flow with data

Queue pos Operator #1 Operator #2

offset #x N/A N/A

Snapshot

© 2018 data Artisans32

Distributed Snapshots

stateful
operation

source

State

State

Take state snapshot Trigger state
snapshot

Queue pos Operator #1 Operator #2

offset #x N/A N/A

Snapshot

© 2018 data Artisans33

Distributed Snapshots

stateful
operation

source

State

State

Take state snapshot Trigger state
snapshot

Queue pos Operator #1 Operator #2

offset #x N/A N/A

Snapshot

© 2018 data Artisans34

Distributed Snapshots

stateful
operation

source

State

State

DFS

Durably persist
snapshots

asynchronously

Processing pipeline continues

Queue pos Operator #1 Operator #2

offset #x pointer to
State file

N/A

Snapshot

© 2018 data Artisans35

Distributed Snapshots

stateful
operation

source

State

State

Multiple snapshots
may happen concurrently

© 2018 data Artisans36

Synchronous Checkpointing

© 2018 data Artisans37

Synchronous Checkpointing

All event processing is on hold to avoid concurrent modifications to state

© 2018 data Artisans38

Asynchronous Checkpointing

● Minimize pipeline stall time while taking snapshot
● MVCC (Multi Versioning Concurrency Control)

© 2018 data Artisans39

Checkpoint Alignment

© 2018 data Artisans40

Checkpoint Alignment

© 2018 data Artisans41

Handling Large State - Different State Backends

val desc =
 new ValueStateDescriptor[MyPojo](
 “my-value-state”,
 createTypeInformation[MyPojo]
)

qwe

41

Your
Code

...

Your
Code

Your
Code

val state =
 getRuntimeContext().getState(desc);

val p = state.value();
...

state.update(...)
...

Local
State Backend

read

write

© 2018 data Artisans42

Handling Large State - Different State Backends

Heap backend

- State lives in memory, on Java heap
- Read / writes operates on Java objects
- State size bounded by memory size

RocksDB backend

- State lives in off-heap and on disk
- Operates on bytes, uses serialization
- State size bounded by disk size

© 2018 data Artisans43

Heap backend

State

State

State

State

State

State

State

D
FS

JVM Heap backed
state backends
(MemoryStateBackend,
FsStateBackend)

⇒ lazy serialization +
eager deserialization

checkpointed state

© 2018 data Artisans44

Heap backend

State

State

State

State

State

State

State

D
FS

JVM Heap backed
state backends
(MemoryStateBackend,
FsStateBackend)

⇒ lazy serialization +
eager deserialization

Java object read / writes

checkpointed state

© 2018 data Artisans45

Heap backend

State

State

State

State

State

State

State

D
FS

JVM Heap backed
state backends
(MemoryStateBackend,
FsStateBackend)

⇒ lazy serialization +
eager deserialization

Java object read / writes

serialize
on chckpts /
savepoints

Checkpoint

checkpointed state

© 2018 data Artisans46

Heap backend

State

State

State

State

State

State

State

D
FS

JVM Heap backed
state backends
(MemoryStateBackend,
FsStateBackend)

⇒ lazy serialization +
eager deserialization

deserialize
to objects
on restore

Restore

checkpointed state

© 2018 data Artisans47

RocksDB backend

State

State

State

State

State

State

State

D
FS

Out-of-core state backends
(RocksDBStateBackend)

⇒ eager serialization +
lazy deserialization

checkpointed state

© 2018 data Artisans48

RocksDB backend

State

State

State

State

State

State

State

D
FS

Out-of-core state backends
(RocksDBStateBackend)

⇒ eager serialization +
lazy deserialization

De-/serialize on every
local read / write

checkpointed state

© 2018 data Artisans49

RocksDB backend

State

State

State

State

State

State

State

D
FS

Out-of-core state backends
(RocksDBStateBackend)

⇒ eager serialization +
lazy deserialization

De-/serialize on every
local read / write

exchange
of state bytes

Checkpoint

checkpointed state

© 2018 data Artisans50

RocksDB backend

State

State

State

State

State

State

State

D
FS

Out-of-core state backends
(RocksDBStateBackend)

⇒ eager serialization +
lazy deserialization

De-/serialize on every
local read / write

exchange
of state bytes

Restore

checkpointed state

© 2018 data Artisans51

Handling Large State - Incremental Checkpoints

C
D

Checkpoint 1 Checkpoint 2 Checkpoint 3

I
E

A
B
C
D

A
B
C
D

A
F
C
D
E

@t
1

@t
2

@t
3

A
F
C

D
E

G
H
C

D
I
E

© 2018 data Artisans52

Handling Large State - Incremental Checkpoints
G
H
C
D

Checkpoint 1 Checkpoint 2 Checkpoint 3

I
E

A
B
C
D

A
B
C
D

A
F
C
D
E

E
F

G
H
I

@t
1

@t
2

@t
3

© 2018 data Artisans53

Incremental Checkpoints with RocksDB backend

● RocksDB is inherently well-suited for implementing incremental checkpoints

● Reads consider Memtable first,
then SSTables

● SSTables are immutable

● Creation / deletion of SSTables
capture the Δ of state

© 2018 data Artisans54

State Management with Savepoints

▪ A persistent snapshot of all state

▪ When starting an application, state can be initialized
from a savepoint

▪ In-between savepoint and restore we can update Flink
version or user code

© 2018 data Artisans55

State Management with Savepoints

▪ No stateless point-in-time

© 2018 data Artisans56

State Management with Savepoints

▪ Before downtime, take a savepoint of the job

© 2018 data Artisans57

State Management with Savepoints

▪ Recover job with state, catch up with event-time processing

with event-time awareness, allows
faster-than-real-time reprocessing

© 2018 data Artisans58

Rescaling State / Elasticity

▪ Similar to consistent hashing

▪ Split key space into key
groups

▪ Assign key groups to tasks

Key
space

Key group #1 Key group #2

Key group #3Key group #4

© 2018 data Artisans59

Rescaling State / Elasticity

▪ Rescaling changes key
group assignment

▪ Maximum parallelism
defined by #key groups

© 2018 data Artisans60

Queryable State

Source

Source

Window
Operator

Window
Operator

Count
[C, D]

Count
[A, B]

A B

A B

C D

C D

● Internal state in the stream processor:

○ Essentially a key-partitioned,
sharded KV store

○ Represents the in-flight
aggregations

○ Exactly-once, fault tolerant

© 2018 data Artisans61

A unified approach to replace Lambda Architecture

Source

Source

Window
Operator

Window
Operator

offset

offset Count
[C, D]

Count
[A, B]

A B

A B

C D

C DA B
 C

 D

A B C D

KV Store

Query
Service

● Example
architecture for
supporting a live
dashboard with
accurate real-time
and historic
aggregations

● Directly query
internal state

© 2018 data Artisans62

Example of a Lambda Architecture

HDFS

Map

Map

Reduce

Reduce

Source &
Sink

Source &
Sink

Offset

KV Store

Cache

Query
Service

A B C D

A B C D

A B C D
A B C D

A B C D

A B C D

A B
C D

A B
C D

A B

C D

in-flight
view

batch
aggregate
view

© 2018 data Artisans63

So, in a nutshell ...

● State fault tolerance: exactly-once semantics, distributed state snapshotting

● Extremely large state (TB+ scale): out-of-core state, efficiently snapshotting large state

● State management: handling state w.r.t. job changes & rescales

● Event-time aware: controlling when results are complete and emitted w.r.t. event-time

Apache Flink, as a stateful stream processor,
is fundamentally designed to address and provide
exactly these ;)

© 2019 Ververica

Tzu-Li (Gordon) Tai,
Senior Software Engineer

@tzulitai

