The Modern Stream Processor:
A View from Apache Flink

Tzu-Li (Gordon) Tai, Senior Software Engineer
Apache Flink PMC / Committer

@tzulitai

% ververica

About me

e PMC / Committer at Apache Flink
o Exactly-once streaming connectors (Kafka, Kinesis)
o State-related things (evolvability of stateful streaming
applications, state backends, etc.)

e Software Engineer at Ververica
o Work full-time developing open source for Apache Flink

About Ververica

Original creators of
Apache Flink®

%

Complete Stream
Processing Infrastructure

(S

Powered by Apache Flink

€L

Alibaba Group

\ony

ING (i

cisco
AR
DALENMC yelpts
aMaDEUS
I
bol.com® SK,”?ele com

4 | © 2019 Ververica

NETFLIX UBER

>
accenture

N

LINE “Yelefonica
Y/
OVH.com rElayr.

& Expedia

S

HUAWEI

ebay

TRB

Better\éloud

A/
COMCAST

S

Caplta/l()ne@

» zalando

- Lightbend
| — |

otto group

(S

What we will talk about

e \What is stateful stream processing and how it has evolved over time

e Apache Flink’s take on stateful stream processing
o Core features and internal designs that make it work

What is Stateful Stream Processing?

The traditional batch way ...

Batch
jobs

© 2019 Ververica

2017-06-14
01:00am

2017-06-14
00:00am

2017-06-13
11:00pm

2017-06-13
10:00pm

Continuously
ingesting data

Time-bounded
batch files

Periodic batch
jobs

The traditional batch way ...

«

r ______ i el B 1
0 o o o0 o o oo
0 O O O™ o O o o
o o o oylo o o o o
:|:| o o ol :|:| oo o o

1 1
| Fp—— - b e e - | I [——

2017-06-14
01:00am

2017-06-14
00:00am

2017-06-13
11:00pm

© 2019 Ververica

2017-06-13
10:00pm

intermediate
state

Consider computing
conversion metric
(# of A — B per hour)

What if the conversion
crossed time
boundaries?

— carry intermediate
results to next batch

What if events come
out of order?

The ideal way

A
- accumulate state
[]

e View of the “history” of the

Output depending on
notions of time

input stream e Outputs when results
40)—. _ - are complete.
e counters, in-progress
windows

e parameters of incrementally
trained ML models, etc.

e State influences the output

long running computation

© 2019 Ververica

The ideal way
J —

Y

Stateful Stream Processor

that handles
-

Large Time / Order /
Distributed State Completeness

consistently, robustly, and efficiently

————— servicing

© 2019 Ververica

Stateful stream processing as
a new paradigm to
continuously process

Produce accurate results
Results available in real-time

is only a natural consequence
of the model

Apache Flink’s take on
Stateful Stream Processing

Stream Processing

process records
one-at-a-time

LA ABAAL

Long running computation, on an endless stream of input

© 2019 Ververica

Distributed Stream Processing

© 2019 Ververica

partitions input streams by
some key in the data

distributes computation
across multiple instances

Each instance is responsible
for some key range

Stateful Stream Processing

© 2019 Ververica

var = ...

update local
variables/structures

if (condition(+)) {

}

Process

External State (with Stateless Stream Processors)

KV
Store

External ’
State Store

© 2019 Ververica

External State v.s. Internal State

UG

User code

1L

:

External State

e State in a separate data store

e Usually much slower due to remote
read / writes

e Fault-tolerance / scalability is
responsibility
of the external storage

e Not that easy to get exactly-once
guarantees

External State v.s. Internal State

UG

Vs

User code

N

~N

g

¥

- =P State

1L

periodic snapshot
S
Stable Storage

Internal State

State within the stream processor
Local read / writes

Snapshots to stable store (DFS)
Always exactly-once consistent
Stream processor needs to handle
large state / rescaling / fault-tolerance

Fault Tolerance for Internal State

Fault tolerance concerns for a stateful stream processor:

e How to ensure exactly-once semantics for the state?

Fault tolerance: simple case

periodically snapshot the

User code state + event log position

local state

Fault tolerance: simple case

periodically snapshot the

User code state + event log position

local state

Fault tolerance: simple case

N
LTI

Fault tolerance: simple case

N

replay events

© 2019 Ververica

User code

local state
(restored)

Recovery: restore
snapshot and replay
events since snapshot

Fault Tolerance for Internal State

Fault tolerance concerns for a stateful stream processor:
e How to ensure exactly-once semantics for the state?
e How to create consistent snapshots of distributed embedded state?

e More importantly, how to do it efficiently without abrupting computation?

© 2019 Ververica

Fault tolerance: distributed state

e Consistent snapshotting:

Fault tolerance: distributed state

Fault tolerance: distributed state

e Consistent snapshotting:

. 000 |

File System

checkpointed checkpointed checkpointed
state state state

Fault tolerance: distributed state

e Recover all local state
® Reset position in input stream

- 000 |

File System

checkpointed checkpointed checkpointed
state state state

© 2019 Ververica

Restore

Distributed Snapshots

Coordination via “asynchronous checkpoint barriers”,
injected into the streams

data stream

<4 newer records older records =
checkpoint checkpoint stream record
barrier n barrier n-1 (event)
part of part of part of

checkpoint n+1 checkpoint n checkpoint n-1

© 2019 Ververica

Distributed Snapshots

EEEH |

TTT1

29 | © 2019 Ververica

source

s

stateful
operation

©

Distributed Snapshots

Trigger checkpoint

. EEEE|)

. EEEE|)

Snapshot

Queue pos Operator #1 Operator #2
offset #x N/A N/A

© 2019 Ververica

Inject checkpoint
barrier

HE EE .1-

stateful
operation

source

Distributed Snapshots

Trigger checkpoint

. EEEE|)

. EEEE|)

Snapshot

Queue pos Operator #1 Operator #2
offset #x N/A N/A

© 2019 Ververica

barriers flow with data
|

!
[] HEN ._l
!
| [ste]
stateful
operation

source

Distributed Snapshots

Take state snapshot

. EEEE|) :.
. EEEE|)) I..

Queue pos Operator #1 Operator #2

offset #x N/A N/A source

© 2019 Ververic a

Trigger state
snapshot

=74

stateful
operation

Distributed Snapshots

Take state snapshot

. EEEE|) :.
. EEEE|)) I..

Queue pos Operator #1 Operator #2

offset #x N/A N/A source

© 2019 Ververic a

Trigger state
snapshot

=74

stateful
operation

Distributed Snapshots

. EEEE|)

. EEEE|)

Snapshot
Queue pos Operator #1 Operator #2
offset #x pointer to N/A
State file

© 2019 Ververica

Processing pipeline continues

Durably persist
snapshots
asynchronously

- /
--" U
U
’
/
U
U
’

._l

’
’
’
’
’
’
’
’
T
,

stateful
operation

source

Distributed Snapshots

© 2019 Ververica

Multiple snapshots
may happen concurrently

4//

source stateful

operation

Synchronous Checkpointing

(loop: processElement) (write state to DFS)
\ | Task Manager

. ~ >

Event processing
thread .

Checkpointing

thread
[Job Manager

Checkpoint
Coordinator thread I 7 ’

/
(acknowledge checkpoint)

\J

/
(trigger checkpoint)

© 2019 Ververica

Synchronous Checkpointing

(loop: processElement) (write state to DFS)
N\ \ [Task Manager
Event processing \ -
thread . >
Checkpointing
thread
[Job Manager
Checkpoint -
Coordinator thread § 7 ’ -

© 2019 Ververica

/ /
(trigger checkpoint) (acknowledge checkpoint)

All event processing is on hold to avoid concurrent modifications to state

Asynchronous Checkpointing

(loop: prqs?ssElement) (snagfhot state) BT
Eventt r;])rr::ac:jes&ng I l 7 -
Checkpointing
thread
[Job Manager
Coo?dr:ﬁgt(gro tlrr::ead |7_ % — ..

(trigger checkpoint) (write state to DFS) (acknowledge checkpoint)

e Minimize pipeline stall time while taking snapshot
e MVCC (Multi Versioning Concurrency Control)

© 2019 Ververica

Checkpoint Alignment

e \ V% input buffer
. v
<

-
checkpoint
barrier n

\c g ®

begin aligning aligning

© 2019 Ververica

Checkpoint Alignment

\ emit barrier n
9

8

2

8

£
/

© 2019 Ververica

checkpoint

d

Cc

b

\ input buffer
@ 8

2

ﬁ
B B /5

continue

Handling Large State - Different State Backends

© 2019 Ververica

val desc =
new ValueStateDescriptor[MyPojo](
“my-value-state”,
createTypeInformation[MyPojo]

)

val state =
getRuntimeContext().getState(desc);

read
val p = state.value();

state.update(...)

Local
State Backend

AN
N

write

41

Handling Large State - Different State Backends

—

Heap backend RocksDB backend
- State lives in memory, on Java heap - State lives in off-heap and on disk
- Read / writes operates on Java objects - Operates on bytes, uses serialization

- State size bounded by memory size - State size bounded by disk size

© 2019 Ververica

Heap backend

00°
O
o O
e — o O
O
JVM Heap backed
state backends
(MemorystateBackend,
FsStateBackend)

—» lazy serialization +
eager deserialization

DFS

Ehl Ehl Ehl Ié'] E’] checkpointed state

© 2019 Ververica

Heap backend

Java object read / writes
@)
o ©
State O

3 o
State O

JVM Heap backed
state backends
(MemorystateBackend,
o FsStateBackend)

—» lazy serialization +
eager deserialization

DFS

Ehl Ehl Ehl Ié'] E’] checkpointed state

© 2019 Ververica

Heap backend

State

serialize —
Stat
on chckpts /

savepoints } {

Ehl Ehl Ehl Ié'] E’] checkpointed state

—» lazy serialization +
eager deserialization

Checkpoint Java object read / writes
00 N 1Ly
94
o O
State O
= JVM Heap backed
_State
state backends
(MemorystateBackend,
ﬁ FsStateBackend)

DFS \

© 2019 Ververica

Heap backend

Restore
| State | @)
ale 8 8
= Siate | =
JVM Heap backed
state backends
(MemorystateBackend,
FsStateBackend)
fleszl_rialize —> lazy serialization +
O objects eager deserialization
on restore |

DFS

Ehl Ehl Ehl Ié'] E’] checkpointed state

© 2019 Ververica

RocksDB backend

00° _

lazy deserialization

Out-of-core state backends
(RocksDBStateBackend)
State ey
LEFD] —» eager serialization +

Ehl Ehl Ehl E’] E’] checkpointed state

DFS

© 2019 Ververica

RocksDB backend

De-/serialize on every
local read / write

00° L 4

—» eager serialization +
lazy deserialization

State
_ Out-of-core state backends
(RocksDBStateBackend)

DFS

Ehl Ehl Ehl I%'] E’] checkpointed state

© 2019 Ververica

RocksDB backend
De-/serialize on every

Checkpomt local read / write
O O
O

State

State State

State Out-of-core state backends

(RocksDBStateBackend)

State T .
—» eager Serialization +

exchange e :
lazy deserialization

of state bytes

—

Ehl Ehl Ehl E’] E’] checkpointed state

i
3 0)0

DFS \

© 2019 Ververica

RocksDB backend
De-/serialize on every

Restore local read / write
O
e O

State

State

Out-of-core state backends
(RocksDBStateBackend)

State L .
exchange —» eager Serialization +

of state bytes lazy deserialization

tate
|_

Ehl Ehl Ehl E’] E’] checkpointed state

DFS

© 2019 Ververica

Handling Large State - Incremental Checkpoints

A
S E c
B C D
C D |
D E | E
at, at, at,

Checkpoint 1 Checkpoint 2 Checkpoint 3

Handling Large State - Incremental Checkpoints

i
A

D E | E
@t, @t, @t,

Checkpoint 1 Checkpoint 2 Checkpoint 3

Incremental Checkpoin

ts with RocksDB backend

® RocksDB is inherently well-suited for implementing incremental checkpoints

-—7 memory
ot~ disk
—

™~ 7merge sort

Ck

© 2019 Ververica

memory |
e A Gy
LO (8MB) U Q) 7 ; :Log:
Li(ome) |) d (J (G
rzaoome) () () (J O Q

s OO0 00Q
(_J SSTable files D memtable . immutable

Reads consider Memtable first,
then SSTables

SSTables are immutable

Creation / deletion of SSTables
capture the A of state

State Management with Savepoints

= A persistent snapshot of all state

* When starting an application, state can be initialized
from a savepoint

* In-between savepoint and restore we can update Flink
version or user code

State Management with Savepoints

- -

Savepoint A Savepoint B

« No stateless point-in-time

© 2019 Ververica

State Management with Savepoints

= ’
Savepoint A

= Before downtime, take a savepoint of the job

(7

State Management with Savepoin!

6 h

SEYepoEA faster-than-real-time reprocessing

= Recover job with state, catch up with event-time processing

57 © 2019 Ververica

Rescaling State / Elasticity

= Similar to consistent hashing Key
space

- Spllt key Space INto key Key group #1 Key group #2

groups

= Assign key groups to tasks

Key group #4 Key group #3

Rescaling State / Elasticity

= Rescaling changes key
group assignment

0 [0
= Maximum parallelism o | - |
defined by #key groups i
oomoH=

Queryable State

e Internal state in the stream processor:

o Essentially a key-partitioned,
sharded KV store

o Represents the in-flight
aggregations

o Exactly-once, fault tolerant

© 2019 Ververica

A unified approach to replace Lambda Architecture

e Example
architecture for
supporting a live
dashboard with
accurate real-time
and historic
aggregations

Window
Operator

e Directly query
internal state

Window
Operator

Query
Service

© 2019 Ververica

Example of a Lambda Architecture

in-flight
view

Query
Service

batch
aggregate
view

© 2019 Ververica

So, in a nutshell ...

e State fault tolerance: exactly-once semantics, distributed state snapshotting
e Extremely large state (TB+ scale): out-of-core state, efficiently snapshotting large state
e State management: handling state w.r.t. job changes & rescales

e Event-time aware: controlling when results are complete and emitted w.r.t. event-time

Apache Flink, as a stateful stream processor,
is fundamentally designed to address and provide
exactly these ;)

© 2019 Ververica

%
ververicao

Tzu-Li (Gordon) Tai, @tzulitai
Senior Software Engineer

