
Building Data Orchestration for Big Data Analytics in the Cloud
Bin Fan | Founding Engineer | Alluxio
binfan@alluxio.com

07/17/2019

About Me

@binfan

binfan@alluxio.com

Founding Engineer & Open Source Maintainer | Alluxio

@apc999

The Alluxio Story

Originated as Tachyon project, at the UC Berkley’s AMP Lab
by then Ph.D. student & now Alluxio CTO, Haoyuan (H.Y.)
Li.2013

2015

Open Source project established & company to
commercialize Alluxio founded

Goal: Orchestrate Data at Memory Speed for the Cloud
for data driven apps such as Big Data Analytics, ML and AI.

2018 20192018

Incredible Open Source Momentum with growing community

1000+ contributors &
growing

4000+ Git Stars

Apache 2.0 Licensed

Hundreds of thousands
of downloads

Join the conversation on Slack
alluxio.io/slack

Data Ecosystem - Beta Data Ecosystem 1.0

COMPUTE

STORAGE STORAGE

COMPUTE

Co-located

Data stack journey and innovation paths

Co-located
compute & HDFS

on the same cluster

Disaggregated
compute & HDFS

on the same cluster

MR / Hive
HDFS

Hive

HDFS

Disaggregated

Burst HDFS data in
the cloud,

public or private

Support Presto, Spark
across DCs without

app changes

Enable & accelerate
big data on

object stores

Transition to Object store

HDFS for Hybrid Cloud

Support more frameworks

▪ Typically compute-bound
clusters over 100% capacity

▪ Compute & I/O need to be
scaled together even when
not needed

▪ Compute & I/O can be
scaled independently but
I/O still needed on HDFS
which is expensive

Data Orchestration for the Cloud

Java File API HDFS Interface S3 Interface REST APIPOSIX Interface

HDFS Driver Swift Driver S3 Driver NFS Driver

Independent scaling of compute & storage

APIs to Interact with data in Alluxio

Spark

Presto

POSIX

Java

Application have great flexibility to read / write data with many options

> rdd = sc.textFile(“alluxio://localhost:19998/myInput”)

CREATE SCHEMA hive.web
WITH (location = 'alluxio://master:port/my-table/')

$ cat /mnt/alluxio/myInput

FileSystem fs = FileSystem.Factory.get();
FileInStream in = fs.openFile(new AlluxioURI("/myInput"));

▪ S3 performance is variable and consistent
query SLAs are hard to achieve

▪ S3 metadata operations are expensive
making workloads run longer

▪ S3 egress costs add up making the
solution expensive

▪ S3 is eventually consistent making it hard
to predict query results

Use Case: Distributed Caching for Cloud Storage

Compute caching for S3 / GCS Accelerate analytical frameworks
on the public cloud

Same instance /
container

Alluxio

Spark

AlluxioAlluxio

Spark

Alluxio

SparkSpark

or

AlluxioAlluxioAlluxio

▪ Accessing data over WAN too slow

▪ Copying data to compute cloud time
consuming and complex

▪ Using another storage system like S3
means expensive application changes

▪ Using S3 via HDFS connector leads
to extremely low performance

Use Case: Data Federation with Hybrid Cloud

HDFS for Hybrid Cloud

Alluxio

Burst big data workloads in
hybrid cloud environments

Same instance /
container

Solution Benefits
▪ Same performance as local
▪ Same end-user experience

▪ 100% of I/O is offloaded

PrestoPrestoPrestoPresto

Abstract & orchestrate data across data silos

HDFS

HIVE

HDFS

SPARK

NFS

TENSOR
FLOW

DATA IN DISPARATE STORAGE SYSTEMS

PRESTO

COMPUTE SPREAD ACROSS MANY DIFFERENT FRAMEWORKS

S3

SPARK

DATA
ORCHESTRATION

DATA
ORCHESTRATION

DATA
ORCHESTRATION

DATA
ORCHESTRATION

DATA
ORCHESTRATION

ANY
DATA
APP
DATA

ORCHESTRATION

Data Elasticity
with a unified
namespace

Abstract data silos & storage
systems to independently scale
data on-demand with compute

Run Spark, Hive, Presto, ML
workloads on your data

located anywhere

Accelerate big data
workloads with transparent

tiered local data

Data Accessibility
for popular APIs &

API translation

Data Locality
with Intelligent
Multi-tiering

Alluxio – Key Innovations

Data Locality with Intelligent Multi-tiering
Local performance from remote data using multi-tier storage

Hot Warm Cold

RAM SSD HDD

Read & Write Buffering
Transparent to App

Policies for pinning,
promotion/demotion, TTL

Data Accessibility via popular APIs and API Translation
Convert from Client-side Interface to native Storage Interface

Java File API HDFS Interface S3 Interface REST APIPOSIX Interface

HDFS Driver Swift DriverS3 Driver NFS Driver

Data Elasticity via Unified Namespace
Enables effective data management across different Under Store

- Uses Mounting with Transparent Naming

Unified Namespace: Global Data Accessibility
Transparent access to understorage makes all enterprise data
available locally

SUPPORTS
• HDFS
• NFS
• OpenStack
• Ceph
• Amazon S3
• Azure
• Google Cloud

IT OPS FRIENDLY
• Storage mounted into Alluxio

by central IT
• Security in Alluxio mirrors

source data
• Authentication through

LDAP/AD
• Wireline encryption

HDFS #1

Object Store

NFS

HDFS #2

Companies Using Alluxio

https://www.alluxio.io/powered-by-alluxio/

Alluxio

Hive

AWS S3

Hive

AWS S3

▪ Cache hot data in Alluxio, keep all data in S3
▪ Faster time to insights with seamless data

orchestration
▪ Accelerated workloads with memory-first data

approach by 10x

Bazaarvoice
Leading Digital marketing Company in Austin

Use Case | Compute Caching for Cloud

https://www.alluxio.io/blog/accelerate-spark-and-hive-jobs-
on-aws-s3-by-10x-with-alluxio-tiered-storage/

https://www.alluxio.io/blog/accelerate-spark-and-hive-jobs-on-aws-s3-by-10x-with-alluxio-tiered-storage/
https://www.alluxio.io/blog/accelerate-spark-and-hive-jobs-on-aws-s3-by-10x-with-alluxio-tiered-storage/

Use case | Data orchestration for agility

DATA ORCHESTRATION
SPARK

HDFS

SPARK K
ubernetes

OBJECT HBASE

ETLSPARK

HDFS OBJECT HBASE

▪ Single namespace to access & address all data
▪ Data local to compute accelerates workloads

China Unicom
Leading Chinese Telco serving 320 million subscribers

Architecture & Data Flow

Alluxio
MasterZookeeper

/ RAFT
Standby
Master

WA
N

Alluxio
Client

Alluxio
Client

Alluxio
Worker

RAM / SSD / HDD

Alluxio
Worker

RAM / SSD / HDD

Alluxio Reference Architecture

…

…

Applicatio
n

Applicatio
n

Under Store 1

Under Store 2

Alluxio Files and Blocks

Alluxio File
Block 1 Block 2 Block 3 Block 4

Alluxio
Worker1

Alluxio
Worker2

Flexible Block Sizes
• Default block size is (512 MB)
• If understore block size is greater: The file will

only take up as much space as needed
• If understore block size is smaller: File will be

split up among multiple blocks
• Last block of a file is not required to be a full

block size

- Files are immutable once completed
- Blocks are stored on Alluxio Workers

Blocks of a file can be on different workers

Alluxio Master – Metadata Service

23

▪ Master responsible for managing metadata
▪ File system namespace (inode tree)
▪ Block / worker info

▪ Standby masters used for checkpointing and
fault tolerance mode
▪ Zookeeper / RAFT used for leader election

▪ Master writes journal for durable operations
▪ Standby masters replay changes from the journal

▪ Performs Under Store metadata operations

File System
Metadata

Block
Metadata

Worker
Metadata

RPC
Service

Under Store

Efficient Metadata Operations: Alluxio on S3

▪ Efficient bucket listing:
▪ Key operations for SparkSQL/Presto query planning
▪ Object metadata will be cached in Alluxio after 1st read

▪ Efficient file rename
▪ Slow operations on S3 as a copy followed by delete
▪ Alluxio implements “persist after rename”
▪ Enables Speculative execution

▪ Batching UFS operations to S3

Alluxio Workers – Data Service

25

▪ Workers responsible for storing and serving
block data
▪ Each worker manages the metadata for the

block data it stores
▪ Workers store block data on various local

storage mediums
▪ Memory
▪ SSD
▪ HDD

▪ Performs Under Store data operations
Data is outside of

worker JVM

Block
MetadataRPC

Service

Data
Transfer
Service

Under Store
RAM / SSD / HDD

Key Innovations & Optimization in Data Service

▪ Avoid JVM GC:
▪ Storing blocks off-heap (e.g., RAMDISK)

▪ Data Capacity:
▪ Tiered Storage Management using HDD, SSD, MEM

▪ Data Throughput:
▪ Fine grained block locking for high concurrency
▪ gRPC based streaming-RPC service stub

▪ Async Data Archival to S3
▪ Apps write to Alluxio (at Alluxio speed), then Alluxio persist data to S3 async (at S3 speed)

Interacting with data in Alluxio – flexible app patterns

Reading Data
• From under store
• From a co-located Alluxio

node
• From a different Alluxio

node

Writing Data
• Write only to Alluxio
• Write only to Under Store
• Write synchronously to Alluxio and

Under Store
• Write to Alluxio and

asynchronously write to Under
Store

• Write to Alluxio and replicate to N
other workers

• Write to Alluxio and async write to
multiple Under stores

Application have great flexibility to read / write data with many options

Read data in Alluxio, on same node as client

28

Alluxio
Worker

RAM / SSD / HDD

Memory Speed Read of Data

Application

Alluxio
Client

Alluxio
Master

Read data not in Alluxio + Caching

29

RAM / SSD / HDD

Network / Disk Speed Read of
Data

Application

Alluxio
Client

Alluxio
Master

Alluxio
Worker Under Store

Write data only to Alluxio on same node as client

30

Alluxio
Worker

RAM / SSD / HDD

Memory Speed Write of Data

Application

Alluxio
Client

Alluxio
Master

Write data to Alluxio and Under Store synchronously

31

RAM / SSD / HDD

Network / Disk Speed Write of
Data

Application

Alluxio
Client

Alluxio
Master

Alluxio
Worker

Under Store

Write data to Alluxio, Alluxio writes it to Under Store
asynchronously

32

RAM / SSD / HDD

Network Speed Write of Data

Application

Alluxio
Client

Alluxio
Master

Alluxio
Worker

Under Store

Architectural Improvement in 2.0 (released in June)

• Off heap metadata storage (namespace scaling)
• gRPC transport layer (cluster and client scaling)
• Improved POSIX API (new workloads)
• Job Service (enable data management)
• Embedded Journal and Internal Leader Election (better integration

with object stores, fewer external dependencies)

Questions?
Welcome to join the Alluxio Open Source Community!
www.alluxio.io | @alluxio | slackin.alluxio.io

http://www.alluxio.org/
https://twitter.com/Alluxio
https://slackin.alluxio.io/

