Revenue Maximization from PEDL trips using Network analysis and Geospatial mapping

PEDL – by Zoomcar

Agenda

- 1. Understanding Pedl
- 2. Journey till Now
- 3. Challenges faced
- 4. Fleet optimization to maximize "Trips per cycle" through network analysis
- 5. Geospatial mapping of trips and searches to identify new expansion opportunities
- 6. Use cases for other businesses
- 7. Q&A

What is PEDL?

PEDL is a smart, affordable and environment friendly cycle sharing service for short trips around your city

Note: Trip can only be ended at a valid station

IOT device features and data collection process

IOT device features and data collection process

PEDL lock is compact IOT device

Basket has a solar panel that powers IOT lock

We get cycle GPS data, battery status, lock/unlock status and signal strength from the lock

PEDLing our way to Expansion

Challenges along the Way

Addressing the Core Issue

Apart from the operational issues such as Repair & Maintenance, IOT device issues etc the core problem is:

" How to increase number of trips per cycle hence maximizing Utility and revenue"

Challenges:

- 1. Allocation of cycles at stations was heuristic based
- 2. The trips per cycle was lower than expected
- Rebalancing of cycles was done once a week in lack of a scientific optimization method
- Identification of new sites for expansion was completely intuition based

Approach to solve the core Issue

How to Increase no of trips per cycle

Optimizing current network of stations within an area cluster

- 1. Cycle rebalancing to optimize for no of trips per cycle
- 2. Identifying dead stations, areas
- 3. Identifying frequented routes with no stations
- 4. Identifying areas where people abandon cycles due to lack of stations
- 5. Launched subscription package to increase frequency of trips

Expanding in new areas with high expected demand

> Identify areas with high volume of empty searches
> Identifying connecting

neighborhoods

Raikere varanas Dasarahalli Ayyappanagara Tatanagar Kanaka This is a video. You can play it **BEL Colony** Nagar Shampura INDUSTRIAL UNIVERSITY OF AGRICULTURAL WHITEFIED SCIENCES - UAS Ferns Habitat PARACHUTE **RMV Stage** REGIMENT ITC Colony II - 1st Block Vaikuntam TRAINING Sudgunte Palya OF SCIENCE Layout Binnamangala BANGALORE Ramesh New Nagar Thippasandra Chakravarty Layout Konena Agrahara Cambridge Rajajinagar 1st Block **Tasker Town** Layout Kempapura Kariyammana Domlur Bengaluru **Rustum Bagh** Agrahara **1st Stage** Shantala Nagar Devarabisanah Railway Sampangirama Rajajinagar Vivek Nagar Colony ARMY SERVICE Nagar **3rd Block** CORPS -Sultanpete ASC SOUTH ST Bed Layout **IBLUR MILITARY** Venkatpura Sadgunte Koramangala AREA Sector 1 Palya 2nd Block **Bismillah** Sector 2 Nagar **Tilak Nagar** Somasundarapalya Jayanagar 6th Block Mangamannapalya **MICO Layout** 0 🕑 trip_starts 🖌 Select Y Axis 09/29 02pm - 09/30 11pm 0

network PEDL Understanding

MY SERVICE **Decoding PEDL Network for** RPS ASC ORTH Fleet optimization

- Creating network chains using rate of trips and transition probabilities
- Fitting a polynomial optimizer to maximize trips per cycle
- Creating daily cycle redistribution plan for fleet

Koramangala 2nd Block

SERVICE

Domlur

1st Stage

ripalaya

ST Bed Layout **Rustum Bagh**

Jakkasand

Teachers Colony

Venkatpura

Belor

Nagasandra

Kempapura

IBLUR FIRHIG RANGE

Sector

Kariyamma

Green Glen Layout

BLURMILITARY

AREA

Agrahara

Objective

 To identify the number of cycles that should be present at the start of the day at each station in order to maximize Trips per cycle and thus Revenue

Concepts:

- 1. Rate of outgoing trips from a station
- 2. Transitions probability from A to B

Rate of Trips from a Station (ROT)

ROT

This is expected number of trips per day from a Station, given cycle availability at day start

For every station a polynomial function was derived that best explains the rate of trips per cycle availability at that station

Objective function (Total trips)

$$f(x) = \sum_{i=1}^{n} (C_i * ROTi)$$

where

 C_i = cycles at station i at the start of day ROT_i = Expected outgoing trips for station i in a day given cycles C_i

Network Chains

Constraints

Cycles at start of day at any station should be >=0 The cycles at the end of the day at any station should be >=0

2

Sum of cycles at all stations should be equal to total cycles

3

Before Optimization

After Optimization

Agara lake	18	20
Arrow electronic India pvt Ltd	17	14
Salarpuria Serenity	15	20
Twin Park	10	5
Outer Ring Road - Agara Park	9	15
Aston Service Apartment	8	10
Petoo	8	0
4th Main Park	7	0
Hsr juice and chats	7	10
Vasudev Adiga's	7	11
Manar Elegance	6	3
Jai Plaza Symphony	6	10
NH Hospital	6	4
Moghul's Awadhi Restaurant	6	5
HSR Club Road	5	15
No of trips per cycle	2	2.5
Total Trins per day	284	355

Total Cycles in HSR: 150 Uplift in Trips per cycle: 20% Uplift in revenue*: 15%

*Uplift in Revenue per cycle is lower than uplift in trips per cycle due to extra cost of rebalancing fleet daily

Finding new sites for expansion

- Identify Frequented routes with no stations
- Areas with no station and high cycle abandonment
- Identifying areas with high empty searches

Frequented routes Heat Map (HSR, <u>Bengaluru)</u>

identifying new sites for expansion (User search

Tools and Techniques used for demand mapping

Plotting tools

Kepler.gl

Folium

Mapbox

Techniques

Heat Maps

Network analysis and Operational research

Choose the plan

best suited to you, cancel anytime

PEDL Perks

₹149 ₹49

Unlimited free rides for a total of 1 hour Validity 30 days daily

PEDL Perks Plus

₹349 ₹199

Unlimited free rides for a total of 2 hours Validity 30 days daily

+

- Free Zoomcar Voucher worth Rs. 1,000
- Discount worth Rs. 10,000 for first month subscription of ZAP subscribe

Recent initiatives to increase revenue per cycle

- We also introduced PEDL subscription at 49 and 199rs. per month with unlimited rides to further increase trips per cycle
 - Area with more subscribers are given priority in cycle allocation
- We have plans to incentivize users to drop cycles at particular stations in order to maintain optimal availability of cycles at all station at all times and reduce rebalancing costs

Implementation was never a cake walk

Learnings

- Start with smaller experiments (we started with 15 stations in HSR layout)
- Keep measuring and flashing results (we tracked the results everyday and flashed uplift reports)
- Build maps to highlight actions and not just describe data
- Don't underestimate the power of making it look good (it's as much of an art as science)

How can other businesses use this?

- Identifying areas to expand operations using app search data (food delivery, groceries, medicine, ecommerce etc.)
- Recruitment or allocation of fleet personals by areas to optimize order delivery time
- Decentralizing warehouses/ pick up stations across city to minimize time to delivery
- Tracking of Fraud during delivery

Team Behind Scenes

Arpit Agarwal Head- Data Science, Zoomcar

Mohit Shukla Software Engineer, Zoomcar

Vinayak Hegde CTO, Zoomcar

For queries write to: Arpit.Agarwal@zoomcar.com