
Optimizing Performance of SQL-on-Anything Engine

Kamil Bajda-Pawlikowski, CTO Starburst @prestosql @starburstdata

Data Council
Singapore 2019

Presto: SQL-on-Anything
Deploy Anywhere, Query Anything

Project History

©2017 Starburst Data, Inc. All Rights Reserved

FALL 2012
4 developers
start Presto

development

SUMMER 2017
180+ Releases

50+ Contributors
5000+ Commits

WINTER 2017
Starburst is founded by

a team of Presto
committers, Teradata

veterans

FALL 2013
Facebook open
sources Presto

SPRING 2015
Teradata joins the

community, begins
investing heavily in

the project

WINTER 2019
Presto Software

Foundation
 established

Community

See more at our Wiki

https://github.com/prestosql/presto/wiki/Presto-Users

Presto in Production

Facebook: 10,000+ of nodes, HDFS (ORC, RCFile), sharded MySQL, 1000s of users

Uber: 2,000+ nodes (several clusters on premises) with 160K+ queries daily over HDFS (Parquet/ORC)

Twitter: 2,000+ nodes (several clusters on premises and GCP), 20K+ queries daily (Parquet)

LinkedIn: 500+ nodes, 200K+ queries daily over HDFS (ORC), and ~1000 users

Lyft: 400+ nodes in AWS, 100K+ queries daily, 20+ PBs in S3 (Parquet)

Netflix: 300+ nodes in AWS, 100+ PB in S3 (Parquet)

Yahoo! Japan: 200+ nodes for HDFS (ORC), and ObjectStore

FINRA: 120+ nodes in AWS, 4PB in S3 (ORC), 200+ users

Why Presto?

Community-driven
open source project

High performance ANSI SQL engine
• New Cost-Based Query Optimizer
• Proven scalability
• High concurrency

Separation of compute
and storage
• Scale storage and compute

independently
• No ETL or data integration

necessary to get to insights
• SQL-on-anything

No vendor lock-in
• No Hadoop distro vendor lock-in
• No storage engine vendor lock-in
• No cloud vendor lock-in

Beyond ANSI SQL

Presto offers a wide variety of built-in functions including:

● regular expression functions
● lambda expressions and functions
● geospatial functions

Complex data types:

● JSON
● ARRAY
● MAP
● ROW / STRUCT

SELECT regexp_extract_all('1a 2b 14m', '\d+'); -- [1, 2, 14]

SELECT filter(ARRAY [5, -6, NULL, 7], x -> x > 0); -- [5, 7]

SELECT transform(ARRAY [5, 6], x -> x + 1); -- [6, 7]

SELECT c.city_id, count(*) as trip_count
FROM trips_table as t
JOIN city_table as c
ON st_contains(c.geo_shape,

st_point(t.dest_lng, t.dest_lat))
WHERE t.trip_date = ‘2018-05-01’
GROUP BY 1;

https://docs.starburstdata.com/latest/functions.html

JDBC / ODBC drivers for BI/SQL tools

C/C++, Go, Java, Node.js, Python, PHP, R and Ruby on Rails

UDFs, UDAFs, Connector SPI

Tools, bindings, extensibility

https://docs.starburstdata.com/latest/installation/enterprise-drivers.html

More connectors

https://www.starburstdata.com/technical-blog/starburst-presto-databricks-delta-lake-support/

https://streaml.io/blog/querying-data-streams-with-apache-pulsar-sql

http://iceberg.incubator.apache.org/

https://eng.uber.com/apache-hudi/

https://tiledb.io/press/tiledb-presto

https://engineering.grab.com/big-data-real-time-presto-talariadb

https://blog.yugabyte.com/presto-on-yugabyte-db-interactive-olap-sql-queries-made-easy-facebook/

https://www.starburstdata.com/technical-blog/starburst-presto-databricks-delta-lake-support/
https://streaml.io/blog/querying-data-streams-with-apache-pulsar-sql
http://iceberg.incubator.apache.org/
https://eng.uber.com/apache-hudi/
https://tiledb.io/press/tiledb-presto
https://engineering.grab.com/big-data-real-time-presto-talariadb
https://blog.yugabyte.com/presto-on-yugabyte-db-interactive-olap-sql-queries-made-easy-facebook/

Enterprise edition

© 2019 10

Founded by Presto committers:
● Over 4 years of contributions to Presto
● Presto distro for on-prem and cloud env
● Supporting large customers in production
● Enterprise subscription add-ons (ODBC,

Ranger, Sentry, Oracle, Teradata, K8S)

Notable features contributed:
● ANSI SQL syntax enhancements
● Execution engine improvements
● Security integrations
● Spill to disk
● Cost-Based Optimizer

https://www.starburstdata.com/presto-enterprise/

https://www.starburstdata.com/presto-enterprise/

Performance

© 2019

Built for Performance
Query Execution Engine:

● MPP-style pipelined in-memory execution
● Columnar and vectorized data processing
● Runtime query bytecode compilation
● Memory efficient data structures
● Multi-threaded multi-core execution
● Optimized readers for columnar formats (ORC and Parquet)
● Predicate and column projection pushdown
● Now also Cost-Based Optimizer

CBO in a nutshell
Presto Cost-Based Optimizer includes:

● support for statistics stored in Hive Metastore
● join reordering based on selectivity estimates and cost
● automatic join type selection (repartitioned vs broadcast)
● automatic left/right side selection for joined tables

https://www.starburstdata.com/technical-blog/

https://www.starburstdata.com/technical-blog/

Statistics & Cost
Hive Metastore statistics:
● number of rows in a table
● number of distinct values in a column
● fraction of NULL values in a column
● minimum/maximum value in a column
● average data size for a column

Cost calculation includes:
● CPU
● Memory
● Network I/O

Join type selection

Join left/right side decision

Join reordering with filter

Join tree shapes

CBO off

CBO on

https://www.starburstdata.com/presto-benchmarks/

Benchmark results

https://www.starburstdata.com/presto-benchmarks/

Benchmark results
● on average 7x improvement vs EMR Presto
● EMR Presto cannot execute many TPC-DS queries
● All TPC-DS queries pass on Starburst Presto

https://www.starburstdata.com/presto-aws/

https://www.starburstdata.com/presto-aws/

Recent CBO enhancements

● Deciding on semi-join distribution type based on cost
● Capping a broadcasted table size
● Various minor fixes in cardinality estimation
● ANALYZE table (native in Presto)
● Stats for AWS Glue Catalog
● Enabling DBMS federation use cases

https://docs.starburstdata.com/latest/optimizer/statistics.html

What’s next for Optimizer

● Enhanced stats support
○ Improved stats for Hive
○ Stats for more DBMS and NoSQL connectors
○ Tolerate missing / incomplete stats

● Core CBO improvements
○ Cost more operators
○ Adjust cost model weights based on the hardware
○ Adaptive optimizations
○ Introduce Traits

● Involve connectors in optimizations

https://github.com/prestosql/presto/wiki/Pushdown-of-complex-operations

Further reading

https://www.prestosql.io

https://www.starburstdata.com

https://fivetran.com/blog/warehouse-benchmark

https://www.concurrencylabs.com/blog/starburst-presto-vs-aws-emr-sql/

http://bytes.schibsted.com/bigdata-sql-query-engine-benchmark/

https://virtuslab.com/blog/benchmarking-spark-sql-presto-hive-bi-processing-googles-cloud-d
ataproc/

https://www.prestosql.io
https://www.starburstdata.com
https://fivetran.com/blog/warehouse-benchmark
https://www.concurrencylabs.com/blog/starburst-presto-vs-aws-emr-sql/
http://bytes.schibsted.com/bigdata-sql-query-engine-benchmark/
https://virtuslab.com/blog/benchmarking-spark-sql-presto-hive-bi-processing-googles-cloud-dataproc/
https://virtuslab.com/blog/benchmarking-spark-sql-presto-hive-bi-processing-googles-cloud-dataproc/

Thank You!

24

Twitter: @starburstdata @prestosql
Blog: www.starburstdata.com/technical-blog/
Newsletter: www.starburstdata.com/newsletter

© 2019

http://www.starburstdata.com/technical-blog/
http://www.starburstdata.com/newsletter

