Data Council Singapore 2019

Optimizing Performance of SQL-on-Anything Engine

Kamil Bajda-Pawlikowski, CTO Starburst

Presto: SQL-on-Anything

Deploy Anywhere, Query Anything Jupyter Power Bl loöker Qlik 💽 🏰 + a b | e a u MicroStrategy Superset presto 🔅 MySQL. 🔗 redis ORACLE' CASSANDRA mongoDB AMAZON HOFS KUDU TERADATA accumu گۋ kafka SQL Server PostgreSC elasticsearch Amazon S3

Project History

presto.

SPRING 2015

Teradata joins the community, begins investing heavily in the project

WINTER 2017

Starburst is founded by a team of Presto committers, Teradata 180+ Releases veterans

50+ Contributors 5000+ Commits Presto Software Foundation established

WINTER 2019

FALL 2012

4 developers start Presto development

FALL 2013

Facebook open sources Presto

Community

See more at our Wiki

Presto in Production

Facebook: 10,000+ of nodes, HDFS (ORC, RCFile), sharded MySQL, 1000s of users

Uber: 2,000+ nodes (several clusters on premises) with 160K+ queries daily over HDFS (Parquet/ORC)

Twitter: 2,000+ nodes (several clusters on premises and GCP), 20K+ queries daily (Parquet)

LinkedIn: 500+ nodes, 200K+ queries daily over HDFS (ORC), and ~1000 users

Lyft: 400+ nodes in AWS, 100K+ queries daily, 20+ PBs in S3 (Parquet)

Netflix: 300+ nodes in AWS, 100+ PB in S3 (Parquet)

Yahoo! Japan: 200+ nodes for HDFS (ORC), and ObjectStore

FINRA: 120+ nodes in AWS, 4PB in S3 (ORC), 200+ users

Why Presto?

Community-driven open source project

High performance ANSI SQL engine

- New Cost-Based Query Optimizer
- Proven scalability
- High concurrency

Separation of compute and storage

- Scale storage and compute independently
- No ETL or data integration necessary to get to insights
- SQL-on-anything

No vendor lock-in

- No Hadoop distro vendor lock-in
- No storage engine vendor lock-in
- No cloud vendor lock-in

Beyond ANSI SQL

Presto offers a wide variety of built-in functions including:

- regular expression functions
- lambda expressions and functions
- geospatial functions

Complex data types:

- JSON
- ARRAY
- MAP
- ROW / STRUCT

```
SELECT regexp_extract_all('1a 2b 14m', '\d+'); -- [1, 2, 14]
SELECT filter(ARRAY [5, -6, NULL, 7], x -> x > 0); -- [5, 7]
SELECT transform(ARRAY [5, 6], x -> x + 1); -- [6, 7]
```

```
SELECT c.city_id, count(*) as trip_count
FROM trips_table as t
JOIN city_table as c
ON st_contains(c.geo_shape,
            st_point(t.dest_lng, t.dest_lat))
WHERE t.trip_date = '2018-05-01'
GROUP BY 1;
```

Tools, bindings, extensibility

JDBC / ODBC drivers for BI/SQL tools

C/C++, Go, Java, Node.js, Python, PHP, R and Ruby on Rails

UDFs, UDAFs, Connector SPI

More connectors

https://www.starburstdata.com/technical-blog/starburst-presto-databricks-delta-lake-support/

https://streaml.io/blog/querying-data-streams-with-apache-pulsar-sql

http://iceberg.incubator.apache.org/

https://eng.uber.com/apache-hudi/

https://tiledb.io/press/tiledb-presto

https://engineering.grab.com/big-data-real-time-presto-talariadb

https://blog.yugabyte.com/presto-on-yugabyte-db-interactive-olap-sql-queries-made-easy-facebook/

Enterprise edition

The Prest[®] Experts.

Founded by Presto committers:

- Over 4 years of contributions to Presto
- Presto distro for on-prem and cloud env
- Supporting large customers in production
- Enterprise subscription add-ons (ODBC, Ranger, Sentry, Oracle, Teradata, K8S)

Notable features contributed:

- ANSI SQL syntax enhancements
- Execution engine improvements
- Security integrations
- Spill to disk
- Cost-Based Optimizer

https://www.starburstdata.com/presto-enterprise/

Performance

Built for Performance

Query Execution Engine:

- MPP-style **pipelined** in-memory execution
- Columnar and vectorized data processing
- Runtime query **bytecode compilation**
- Memory efficient data structures
- Multi-threaded multi-core execution
- Optimized readers for **columnar formats** (ORC and Parquet)
- Predicate and column projection **pushdown**
- Now also Cost-Based Optimizer

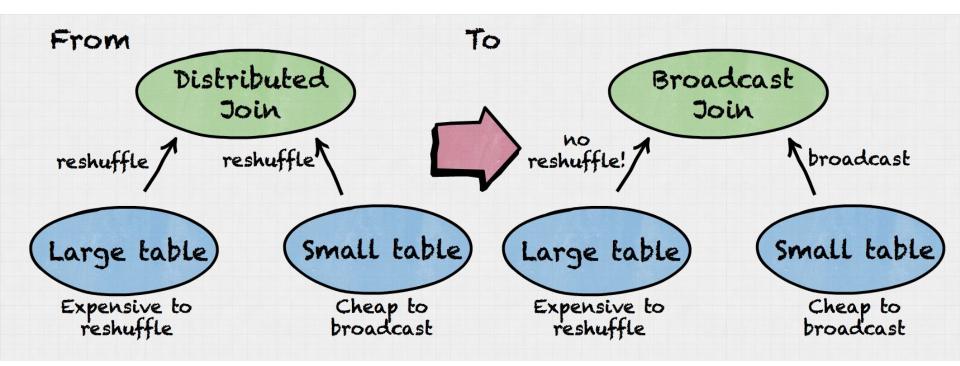
CBO in a nutshell

Presto Cost-Based Optimizer includes:

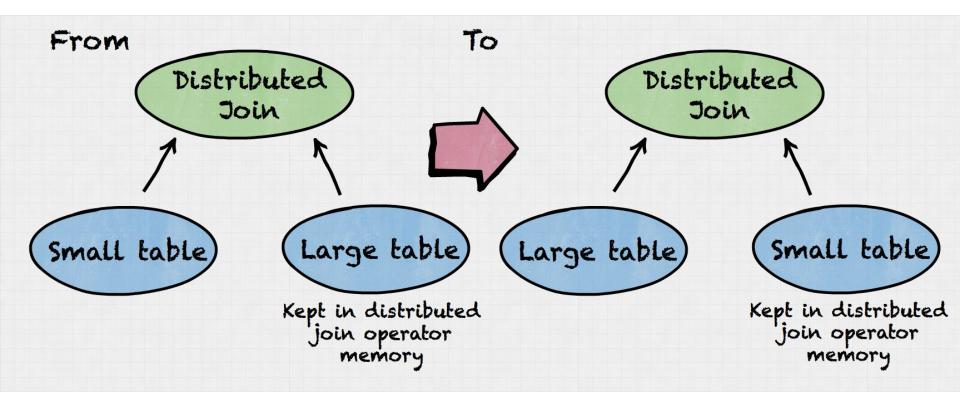
- support for **statistics** stored in Hive Metastore
- join reordering based on selectivity estimates and cost
- automatic **join type** selection (repartitioned vs broadcast)
- automatic left/right side selection for joined tables

https://www.starburstdata.com/technical-blog/

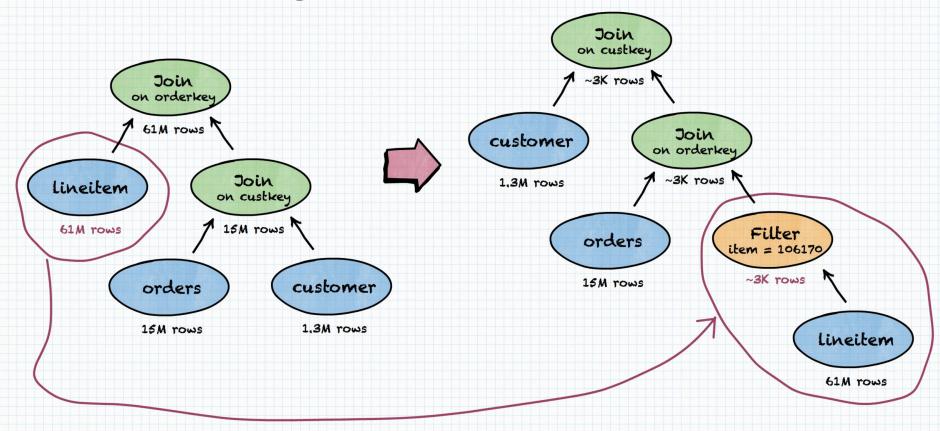
Statistics & Cost

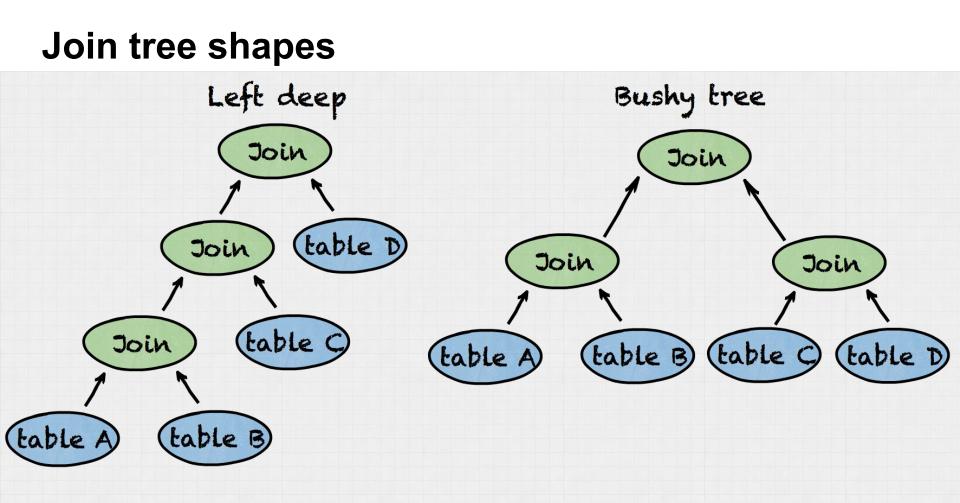

Hive Metastore statistics:

- number of rows in a table
- number of distinct values in a column
- fraction of NULL values in a column
- minimum/maximum value in a column
- average data size for a column

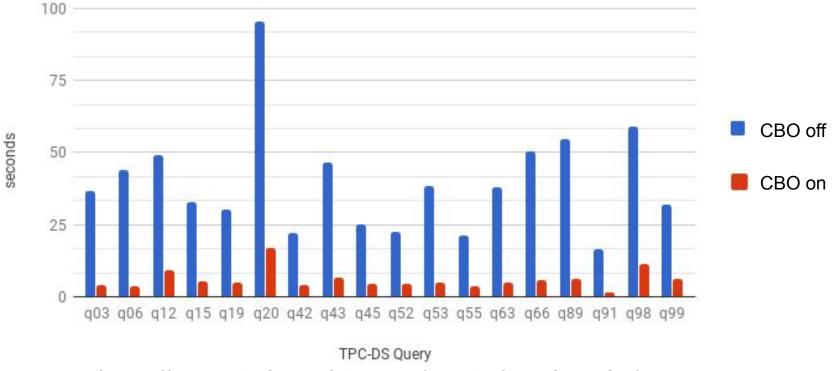

Cost calculation includes:

- CPU
- Memory
- Network I/O


Join type selection

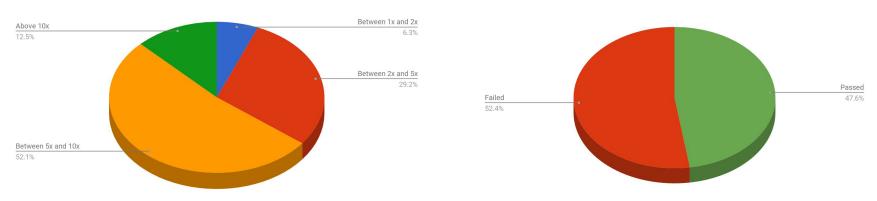


Join left/right side decision



Join reordering with filter

Benchmark results



https://www.starburstdata.com/presto-benchmarks/

Benchmark results

Starburst Presto (CBO) vs EMR Presto speedup

- on average 7x improvement vs EMR Presto
- EMR Presto cannot execute many TPC-DS queries
- All TPC-DS queries pass on Starburst Presto

EMR Presto TPC-DS passed queries %

https://www.starburstdata.com/presto-aws/

Recent CBO enhancements

- Deciding on semi-join distribution type based on cost
- Capping a broadcasted table size
- Various minor fixes in cardinality estimation
- ANALYZE table (native in Presto)
- Stats for AWS Glue Catalog
- Enabling <u>DBMS federation</u> use cases

What's next for Optimizer

- Enhanced stats support
 - Improved stats for Hive
 - Stats for more DBMS and NoSQL connectors
 - Tolerate missing / incomplete stats
- Core CBO improvements
 - Cost more operators
 - Adjust cost model weights based on the hardware
 - Adaptive optimizations
 - Introduce Traits
- Involve connectors in optimizations

Further reading

https://www.prestosql.io

https://www.starburstdata.com

https://fivetran.com/blog/warehouse-benchmark

https://www.concurrencylabs.com/blog/starburst-presto-vs-aws-emr-sql/

http://bytes.schibsted.com/bigdata-sql-query-engine-benchmark/

https://virtuslab.com/blog/benchmarking-spark-sql-presto-hive-bi-processing-googles-cloud-d ataproc/

Thank You!

Twitter: @starburstdata @prestosql **Blog**: <u>www.starburstdata.com/technical-blog/</u> **Newsletter**: <u>www.starburstdata.com/newsletter</u>

24