Causal Inference Making the right intervention

Paul Beaumont, PhD

Senior Data Scientist at QuantumBlack Singapore

Confidential and proprietary: Any use of this material without specific permission of McKinsey & Company is strictly prohibited

The world of machine learning – in a nutshell

Predictive modelling

 Estimate the target for new observations

Explanatory modelling

 Describe the effect that a change of certain inputs has on the target

y = f(x)

Optimisation

- Find the inputs that give optimal performance
- f is known

Key decisions require explanatory models

- Which medication will help a given patient?
- What marketing campaign will be most effective?
- How can a pharmaceutical company reduce non-conformities during their drug manufacturing process?
- What changes can a vehicle manufacturer make to their new product development process to reduce lead time?
- How can an company deploy resources to better serve customers?

We'd expect these explanations to make causal sense before trusting the model

Does ice cream cause forest fires?

Is ice cream the new diet food?

Actionable insights?

Causal inference is a hot topic in data science...

- Desire for **causal** methods given the prevalence of machine learning algorithms in all parts of society.
- **Counterfactual fairness**¹: A decision is fair towards an individual if it is the same in

(a) the actual world and

- (b) a counterfactual world where the individual belonged to a different demographic group.
- Close relationship to **Reinforcement learning**

Pearl: "Systems that operate in purely statistical mode of inference ... cannot reason about interventions ... and, therefore, cannot serve as the basis **for strong AI**."²

... but machine learning unfortunately often doesn't care about causality

<pre>model = sm.OLS(tr results = model.f print(results.sun</pre>	rain.y fit() mmary(, train[['t'))]])		Test RM	ISE = 10
		OLS Re	gression	Results		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	 W	Least Squa ed, 13 Feb 2 07:25 1401 1401 nonrob	y R-s OLS Adj res F-s 019 Pro :25 Log 801 AIC 800 BIC 1 pust	quared: . R-squared: tatistic: b (F-statisti -Likelihood: :	.c):	0.019 0.019 2.766e+04 0.00 -5.2235e+06 1.045e+07 1.045e+07
<pre>model = sm.OLS(tr results = model.f print(results.sum</pre>	coef .9984 rain.y fit() mmary(<pre>std err 0.006 , train[['t'))</pre>	t 166.317 , 'car']]	P> t 0.000	0.025 0.987 آest RMS	0.975] 1.010 SE = 7.7
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	 W	OLS Re Least Squa ed, 13 Feb 2 07:27 1401 1401 nonrob	gression 1 y R-se OLS Adj res F-s 019 Prof :29 Log 801 AIC 799 BIC 2 ust	Results quared: . R-squared: tatistic: o (F-statisti -Likelihood: :		0.408 0.408 4.835e+05 0.00 -4.8695e+06 9.739e+06 9.739e+06
	coef	std err	======== t	P> t	[0.025	0.975]
t -1. car 4.	.0036	0.005 0.004	-196.455 959.740	0.000 0.000	-1.014 3.994	-0.994 4.011

... but machine learning unfortunately often doesn't care about causality

Randomised Control Trials test for causality but have limitations; most data is observational

• Randomly assign treatment to individuals:

 $Y \perp T$

- Often small data set
- Limited generalizability, risk if participants are not representative of population
- Unethical in many cases
- Unconfounded by design

- Data is generated without the causal question in mind
- Often large and rich data set
- Most common case because:
 - Did not think of the question when data was created
 - Financial and reputational risk
 - Budget and time constraints
- Potential problem with hidden confounding

There are 2 key challenges we need to solve when working with observational data:

- 1 Finding the causal direction
- 2 Confounding

...let's discuss some potential solutions!

Identifying the causal direction of a relationship purely from data is something the research community is working on

Mitrovic, Sejdinovic & Teh's NeurIPS 2018 paper "Causal Inference via Kernel Deviance Measures (KCDC)" postulates that sometimes a causal direction can be determined from distributions of the data.

Example:

"... asymmetry is realized by the Kolmogorov complexity of the mechanism in the causal direction being **independent** of the input value of the cause."

...but sometimes expert help will be necessary

Confounding poses a risk to causal inference on observational data

- A **confounder** is a variable that influences both the treatment and the target
- Confounding can limit identifiability of the causal effect

Suitable fixes

- Match populations using propensity score matching
- Capture non-linear relationships between Y, X and highly-varied X across treatment groups using **ML**
- Obtain confidence intervals using Causal Forests, BART
- Model relationships between all variables and encode subject matter expertise using Bayesian Networks or structural equations

Augmenting modelling using expert knowledge can help

Graphical models encode domain expertise

- **Bayesian Networks** are graphical models where the graph is a DAG
- Assumptions are marked by the (lack of) edges
- Incorporates the human understandable part of the model
- Facilitates discussion with subject matter experts

Structural equations facilitate counterfactuals

- Mathematical encoding of the transformations of parent nodes into child nodes
- Each function is autonomous to possible changes in the form of the other functions

$$D = f_1(L, \varepsilon_1)$$
$$W = f_2(M, L, \varepsilon_2)$$
$$H = f_3(W, D, \varepsilon_3)$$

Pearl (1995) Causal diagrams for empirical research. Biometrika 82 Pearl (2000) Causality: Models, Reasoning, and Inference. Cambridge University Press (2nd edition 2009)

Graphical models, notably Bayesian Networks, are an intuitive way to encode context knowledge

Structure learning

- Computationally demanding
- Constraint-based methods
- Score-based methods
 - Continuous optimization: DAGs with NO TEARS
- Hybrid learning where domain expertise edits the network structure:
 - Ensure causal direction
 - Add missing (but weak) associations
 - Handle spurious data relationships

Model performance

- Provided sufficient data, BNs should outperform simpler interpretable models
 - Allow for modelling of interdependencies between variables, rather than additive

Perform inference

- Maximum likelihood estimation for one-step
 probabilities
- Conditional distributions as product of one-step probabilities along the route
- Junction tree algorithm for efficient execution of inference

Bayesian Networks have historically struggled to get traction as they were difficult to learn; new methods drastically change this

Previous techniques suffered because they needed to "check acyclicity holds" and this is a combinatorial optimization problem. The authors of *DAGs with NO TEARS (Zheng et al.)* convert this to a continuous test (that is faster and easier to incorporate into search algorithms), leveraging the properties of the adjacency matrix

The leading diagonal (or trace) of a DAG's adjacency matrix, *W*, is all zeros.

Raising *W* to a power, *k* will produce all possible paths *k* steps away. In a DAG, trace(W^k) = 0 for all *k*.

$$\sum_{k=1} \sum_{i=1}^{d} \frac{(W^{2k})_{ii}}{k!} = trace\left(e^{(W \odot W)}\right) - d = 0 \ (<\epsilon)$$

Causal models can be used to support decision making in important domains such as healthcare

- · The network structure is generated from both data and domain knowledge.
- Incorporating domain expertise ensures the model represents a domain expert's view of causal relationships
- Quantifying the relationship between patient demographics, comorbidities, and cardiovascular events can be used to identify key drivers of patient risk

Trained on Truven Claims data (2015 – 2017) Structure learning uses DAGs with NO TEARS: Continuous Optimization for Structure Learning; Zheng et al.; NeurIPS 2018

With this approach we could better understand patient journeys

Risk of MI within 12 months¹

More generally, if we model causally we can apply data science to business problems and perform counterfactual analysis to ask "what if?"

- Once we have trained a causal model, we identify counterfactuals that we would like to test and "intervene" on.
- These are generated by changing the historical data to reflect the actions of the intervention, and new predictions (of a target) are generated.
- Comparing these to the target from the "real" data allows us to calculate the value at stake of implementing the counterfactual change.
- If our models aren't causal, our "what if's" could be very inaccurate

Takeaways

- If we want to trust models for decisions, then we should expect them to make causal sense
- Training on observational data is common, and the causal direction of relationships is not always clear
- Methods exist to help us identify possible causal relationships, but domain experts can also help
- Models that respect causality also exist and thanks to recent advances are now easier to learn and deploy

