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The world of machine learning – in a nutshell

Optimisation

𝑦 = 𝑓(𝑥)

• Find the inputs that give 
optimal performance

• f is known

Explanatory modelling

𝑦 = 𝑓(𝑥)

• Describe the effect that a 
change of certain inputs has 
on the target

Predictive modelling

𝑦 = 𝑓(𝑥)

• Estimate the target for new 
observations

Galit Shmueli (2010) To Explain or to Predict? Statistical Science,

CAUSAL INFERENCE
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Key decisions require explanatory models

• Which medication will help a given patient?

• What marketing campaign will be most 
effective?

• How can a pharmaceutical company reduce 
non-conformities during their drug 
manufacturing process?

• What changes can a vehicle manufacturer 
make to their new product development 
process to reduce lead time?

• How can an company deploy resources to 
better serve customers?

CAUSAL INFERENCE
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We’d expect these explanations to make 
causal sense before trusting the model

Does ice cream cause forest fires? Is ice cream the new diet food?

Actionable insights?

CAUSAL INFERENCE
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Causal inference is a hot topic in data science… 

1. Kusner, Loftus, Russell, Silva (2017) Counterfactual Fairness. NeurIPS
2: Pearl (2018) The seven tools of causal inference with reflections on machine learning, CACM 
Image: https://fairmlclass.github.io/

• Desire for causal methods given the prevalence of machine 
learning algorithms in all parts of society.

• Counterfactual fairness1: A decision is fair towards 
an individual if it is the same in 

(a) the actual world and

(b) a counterfactual world where the individual belonged to a 
different demographic group.

• Close relationship to Reinforcement learning

Pearl: “Systems that operate in purely statistical mode of 
inference ... cannot reason about interventions … and, therefore, 
cannot serve as the basis for strong AI.”2

CAUSAL INFERENCE
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… but machine learning unfortunately often doesn’t care about causality

𝐶 = 𝑅 + 𝐴 + 𝜀,
𝑇 = 𝑅 + 𝜀.
𝑌 = 𝑇 + 10 𝐴 + 𝜀2

Goal:
Find the effect of sun 
exposure on the illness

𝑅 = 𝜀3
𝐴 = 𝜀4

independent normal(0,1)𝜀3, … , 𝜀2

Test RMSE = 10

Test RMSE = 7.7

CAUSAL INFERENCE

R = Country 
of residence

C = Type of 
car owned

A = Age

T = 
Exposure 

to sun
Y = Illness

Pearl (2014) Comment: Understanding Simpson’s Paradox, The American Statistician. 
Simpson machine generator: http://dagitty.net/learn/simpson/
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Randomised Control Trials test for causality but have limitations; 
most data is observational

• Randomly assign treatment to individuals:

Y ⟂ T

• Often small data set

• Limited generalizability, risk if participants 
are not representative of population

• Unethical in many cases

• Unconfounded by design

• Data is generated without the causal question 
in mind

• Often large and rich data set

• Most common case because:
• Did not think of the question when data was 

created
• Financial and reputational risk
• Budget and time constraints

• Potential problem with hidden confounding

Randomised Control Trials (RCT) Observational Studies

CAUSAL INFERENCE



There are 2 key challenges we need to solve when 
working with observational data:

1     Finding the causal direction

2 Confounding

…let’s discuss some potential solutions!
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Mitrovic, Sejdinovic & Teh’s NeurIPS 2018 paper “Causal Inference via Kernel Deviance Measures (KCDC)” postulates 
that sometimes a causal direction can be determined from distributions of the data.

Example: 

If 𝑋 → 𝑌, 𝑦| 𝑥 ∼ 𝑁(𝑥, + x, 𝜎4) then 

“… asymmetry is realized by the Kolmogorov complexity of the mechanism in the causal direction being independent of 
the input value of the cause.”

Identifying the causal direction of a relationship purely from data 
is something the research community is working on 

Causal: 𝑝 𝑌 𝑋) Anti-causal: 𝑝 𝑋 𝑌)

larger structural 
variability

arXiv: 1804.04622

CAUSAL INFERENCE

…but sometimes expert help will be necessary

https://arxiv.org/abs/1804.04622
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Are the sub-
populations 

representative?

• A confounder is a variable that influences both the 
treatment and the target

• Confounding can limit identifiability of the causal 
effect

Suitable fixes
• Match populations using propensity score matching

• Capture non-linear relationships between Y, X and 
highly-varied X across treatment groups using ML

• Obtain confidence intervals using Causal Forests, 
BART

• Model relationships between all variables and encode 
subject matter expertise using Bayesian Networks or
structural equations

Can differences wrt
target be described 

by observed 
covariates?

Look for most 
suitable f

Look for most 
suitable f

Handle 
confounding

CAUSAL INFERENCE

Confounding poses a risk to causal inference on observational data
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𝐷 = 𝑓3(𝐿, 𝜀3)
𝑊 = 𝑓4(𝑀, 𝐿, 𝜀4)
𝐻 = 𝑓,(𝑊,𝐷, 𝜀,)

Graphical models encode domain expertise Structural equations facilitate counterfactuals

• Mathematical encoding of the transformations of 
parent nodes into child nodes

• Each function is autonomous to possible changes 
in the form of the other functions

• Bayesian Networks are graphical models where 
the graph is a DAG

• Assumptions are marked by the (lack of) edges

• Incorporates the human understandable part of 
the model

• Facilitates discussion with subject matter experts

Pearl (1995) Causal diagrams for empirical research. Biometrika 82
Pearl (2000) Causality: Models, Reasoning, and Inference. Cambridge University Press (2nd edition 2009)

Augmenting modelling using expert knowledge can help
CAUSAL INFERENCE

Holmes’ 
Sprinkler

Holmes’ 
Grass Wet

It Rains

Watson’s 
Grass Wet

Holmes’ 
Sensor
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Graphical models, notably Bayesian Networks, 
are an intuitive way to encode context knowledge

Structure learning

Perform inference

• Maximum likelihood estimation for one-step 
probabilities

• Conditional distributions as product of one-step 
probabilities along the route 

• Junction tree algorithm for efficient execution of 
inference

• Computationally demanding

• Constraint-based methods 

• Score-based methods

• Continuous optimization: DAGs with NO TEARS

Zheng et al. (2018). DAGs with NO TEARS: Continuous Optimization for Structure Learning, NeurIPS

CAUSAL INFERENCE

• Hybrid learning where domain expertise edits the 
network structure:

• Ensure causal direction

• Add missing (but weak) associations

• Handle spurious data relationships

Model performance

• Provided sufficient data, BNs should outperform 
simpler interpretable models

• Allow for modelling of interdependencies 
between variables, rather than additive
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Bayesian Networks have historically struggled to get traction as they were 
difficult to learn; new methods drastically change this
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• The leading diagonal (or trace) of a 
DAG’s adjacency matrix, W, is all 
zeros. 

• Raising W to a power, k will produce 
all possible paths k steps away. In a 
DAG, trace(W k) = 0 for all k.

• trace(W k) = 0 for all k is true iff:
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https://arxiv.org/pdf/1803.01422.pdf

CAUSAL INFERENCE

Previous techniques suffered because they needed to “check acyclicity holds” and this is a combinatorial optimization 
problem. The authors of DAGs with NO TEARS (Zheng et al.) convert this to a continuous test (that is faster and easier 
to incorporate into search algorithms), leveraging the properties of the adjacency matrix

https://arxiv.org/pdf/1803.01422.pdf
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MI 24 to 31 times more sensitive to variable than weakest variable

MI is 16 to 21 times more sensitive to variable than to weakest variable

MI is 1 to 7 times more sensitive to variable than to weakest variable

Sensitivity off MI to variable

Strength of relationship

>150 times stronger than weakest relationship

50-150 times stronger than weakest relationship

10-49 times stronger than weakest relationship

0-10 times stronger than weakest relationship

Causal models can be used to support decision making 
in important domains such as healthcare

Abdominal pain

Diabetes

Heart disease

Hypertension

Kidney disease

Long term current 
use of aspirin

Kidney failure

Metabolic disorder

PAD

Prior MI

Respiratory failure

Smoking

Age
Hospitalized

Heart failure

Chest pain, palpitations or
shortness of breath

High Cholesterol

Region

Anemia

Atherosclerotic 
heart disease

Gender

Respiratory disease

Obesity

Presence of stent

MI

ILLUSTRATIVE

Relationships and sensitivity of myocardial infarction (MI) to covariates

• The network structure is generated from both data and domain knowledge. 
• Incorporating domain expertise ensures the model represents a domain expert’s view of causal relationships
• Quantifying the relationship between patient demographics, comorbidities, and cardiovascular events can be used to 

identify key drivers of patient risk
Trained on Truven Claims data (2015 – 2017)
Structure learning uses DAGs with NO TEARS: Continuous Optimization for Structure Learning; Zheng et al.; NeurIPS 2018

CAUSAL INFERENCE
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Baseline risk of 
CAD/PAD patient 
having a MI event

Mrs. Smith, smoker, 
BMI 32, age 50, PAD

Mrs. Smith, now aged 
55, has diabetes

Mrs. Smith, age 58, 
has developed 
symptoms of heart 
failure

Mrs Smith, age 62, has 
made lifestyle changes: 
no longer smokes and 
has a BMI of 29

Mrs. Smith’s lifestyle 
drives an increase in 
MI risk, as well as an 
increased risk of 
diabetes (2.1% 
change to 2.6%)

Mrs. Smith’s risk of 
MI is not much 
increased – but she 
is now at increased 
risk of heart failure 
(4.5% to 11.7%)

4.8%

5.1% 5.1% 8.8% 4.5%

Her risk of an MI is 
now below that of 
the average 
CAD/PAD patient

Based on the 
symptoms of heart 
failure, Mrs Smith is 
now at much higher 
risk of MI

SOURCE: Truven Claims Data (2105-2017)

Risk of MI within 12 months1

With this approach we could better understand patient journeys
CAUSAL INFERENCE
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More generally, if we model causally we can apply data science to business 
problems and perform counterfactual analysis to ask “what if?”

Trained causal model Business 
driven 

decision

Historical 
data Identify 

interventions
New predictions 

using trained 
model

Shift to make 
counterfactual 
“what if” data

Value at 
stake

• Once we have trained a causal model, we identify counterfactuals that we would like to test and “intervene” on.
• These are generated by changing the historical data to reflect the actions of the intervention, and new predictions (of a 

target) are generated.
• Comparing these to the target from the “real” data allows us to calculate the value at stake of implementing the 

counterfactual change.

• If our models aren’t causal, our “what if’s” could be very inaccurate

CAUSAL INFERENCE
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Takeaways

Comic: https://xkcd.com/552/

• If we want to trust models for decisions, 
then we should expect them to make 
causal sense

• Training on observational data is common, 
and the causal direction of relationships is 
not always clear

• Methods exist to help us identify 
possible causal relationships, but
domain experts can also help

• Models that respect causality also exist 
and thanks to recent advances are now 
easier to learn and deploy


