m |:||:||9® Q Data Council

Sparklens: Understanding the Scalability Limits
of Spark Applications

Ashish Dubey, Qubole

ABOUT PRESENTER

Ashish is a Big Data leader and practitioner with more than 15 years of industry experience.
Equipped with immense experience involving the design and development of petabyte-scale Big
Data applications, he is a seasoned technology architect with variegated experiences in customer
interfacing and technical leadership roles.

Ashish heads Qubole's Solutions Architecture team for International Markets, and works with a
number of enterprise customers in the EMEA, APAC and India regions. Prior to Qubole, Ashish
worked at Microsoft as an engineer in the Windows team. Later, he worked for Claraview
(Teradata), while leading their Big Data practice and helped to scale some of their Fortune 500
clients in different industry verticals such as finance, healthcare, retail and multimedia.

PERFORMANCE THEORY BEHIND QUBOLE SPARKLENS
TUNING PITFALLS SPARKLENS TUNING EXAMPLE

SPARK APPLICATION STRUCTURE

JVM JVM
Driver Executor
Task

SEETKE

QuBIE SPARK TUNING: COMMON APPROACHES

Brute-force Job Diagnosis and Experiments

Change number of executors

Memory parameter resizing for executors
Driver memory

Shuffle Partitions

Join strategies

And many more

Spark App Ul Analysis

Identify major bottlenecks

Driver/Executor log analysis

Iterative experiments based on above steps

* Very unreliable approach * Costly in terms of time and developer cost

QuBIE SPARK TUNING: PERFORMANCE KEY FACTORS

Resource Utilization(Memory/CPU)
Driver-only phases (Executors sitting idle)
Tasks vs Num of Executors/Cores

Skewed Tasks

Scalability Limits (e.g. num-executors)

QuBIE MINIMIZE DOING NOTHING

Driver

Coref

Core?2

Core3

Core4

Time —

QuBIE DRIVER SIDE COMPUTATIONS

Driver

Coref

Core?2

Core3

Core4

Time

QuBIE WHAT DRIVER DOES

File listing & split
computation

Loading of hive tables
FOC

Collect

df.toPandas|)

Moo NOT ENOUGH TASKS

Driver

Coref

Core?2

Core3

Core4

Time

QuBIE CONTROLLING NUMBER OF TASKS

HDFS block size
Min/max split size

Default Parallelism

Shuffle Partitions

Repartitions

NON-UNIFORM TASKS: SKEW

Driver

Coref

Core?2

Core3

Core4

Time —

QuBIE CRITICAL PATH: LIMIT TO SCALABILITY

Driver

Coref

Core?2

Core3

Core4

Time —

QuBIE IDEAL APPLICATION TIME

Driver

Coret

Core2

Core3

Cored

Time

Spark application is either
executing in driver or in
parallel in executors

Child stage is not executed
until all parent stages are
complete

Stage is not complete until all
tasks of stage are complete

CONTROLLING NUMBER OF TASKS

SPARKLENS

Uploaded At : 2019-07-14 9:00:19 AM
Original File Size : 87 KB
Original File name : application_1563088643227.0028.sparklens.json

An Open Source Spark Profiling Tool

The total spark application wallclock time can be divided into time spent in driver and time spent in executors. When a spark application spends too much time in the driver, it wastes the executors compute time. Executors can also
waste compute time, because of lack of tasks or skew. And finally, critical path time is the minimum time that this application will take even if we give it infinite executors. Ideal application time is computed by assuming ideal
partitioning (tasks == cores and no skew) of data in all stages of the application.

Runs with any Spark Deployment (Any
Cloud, On-Prem or Distribution)

Ll Driver vs Executor wallclock time Ll Critical and ideal application time

Driver Wallclock Time Acutal Runtime.

Helps you take the right decision without
many experiments (or trial and error)

Executor Wallclock Time. Om 525 Critcal path Om19s.

Total Wallclock Time: Ideal appiication time.

1m 5s Om 59s.
Om0s Om 50s 1m s 0m0s. Om 50s.

nss
Time i mintes)

‘Time (in minutes)

(Mool - USING SPARKLENS

https://github.com/qubole/sparklens

—packages qubole:sparklens:0.3.0-s 2.11
—conf spark.extralistener=com.qubole.sparklens.QuboledJobListener

For inline processing, add following extra command line options to spark-submit

Old event log files (history server)

—packages qubole:sparklens:0.3.0-s 2.11 --class

com.qubole.sparklens.app.ReporterApp dummy-arg <eventLogFiles>
source=history

Special Sparklens output files (very small file with all the relevant data)

—packages qubole:sparklens:0.3.0-s 2.11 --class
com.qubole.sparklens.app.ReporterApp dummy-arg <eventLogFiles>

Wall Clock
Time

Critical Path
Time

SPARKLENS - FOUNDATION BRICKS

Ideal”
Application
Time

SPARKLENS REPORTING SERVICE

ttp://sparklens.qubole.net/

same work in same amount of wall clock tir

Predicted wall clock time and cluster utilization with different executor counts
lz Executors available and executors required over time

249

240 ,__é’—A

11m21s
10mS0s

10mOs

9mos

8m20s

Executors

7m30s

Estimated Time

6m40s

5m49s

S5mOs

2m20s 2m39s 24 100 200 300 400

Time (in minutes)

0m20s 0m40s,

Nno skew) of data in all stages of the application.

computed by assuming ideal partitioning (tasks cores and

Driver vs Executor wa Critical and ideal application time

Driver Wallclock Time Acutal Runtime

Executor Wallclock Time Critical path
Total Wallclock Time Ideal application time
omos omos

Time (in minutes)

Core compute hours wastage by driver and executor

Total OCCH available
Total ©OCCH wasted
OCcCcH wasted by executor

oOcCcH wasted by driver
©0.00%

http://sparklens.qubole.net/

SPARKLENS IN ACTIO

PERFORMANCE TUNING - A SIMPLE SPARK

SPARK JOIN SQL

Uploaded At : 2019-07-14 9:00:14 AM

@ Untitled (288247003) QP 69 Q no tags g:s:::: ;::: :Iaz:e 7::;‘0&‘077,1563088643227,0026.Spark\en5.150n

Efficiency Statistics ~ Simulation Per Stage Metrics Ideal Executors Aggregate Metrics

Spark Command

The total spark application wallclock time can be divided into time spent in driver and time spent in executors. When a spark application spends too much time in the driver, it wastes the executors compute time. Executors can
waste compute time, because of lack of tasks or skew. And finally, critical path time is the minimum time that this application will take even if we give it infinite executors. Ideal application time is computed by assuming i
partitioning (tasks == cores and no skew) of data in all stages of the application.

SQL Query Statement

. Driver vs Executor wallclock time Wl Critical and ideal application time
1 select b.s_state, count(*) as cnt from tpeds_orc_1000.store sales a join tpeds_orc_1000.store b on (a.ss_store_sk=b.s store sk |
2 group by b.s state [o 1es T mos
- Driver Walllock Time Acutal Runtime
Executor Waldock Time mdss Crica path om2ts
Total Wallclock Time Ideal applcaton time
2m 0s 1m 53s.
omos maos Zmos omos Tmats Zmos
Time (in minutes) Time (in minutes)

L Core compute hours wastage by driver and executor

100.00%
Total OCCH available

Uploaded At : 2019-07-14 9:00:14 AM
Original File Size : 76 KB
Original File name : application 1563088643227 0026.sparklens.json

Efficiency Statistics Simulation Per Stage Metrics Ideal Executors Aggregate Metrics
Not all stages are equally important. Start by looking at stages which occupy most of the wall clock time. Specifically look for lower PRatio and higher TaskSkew and fix accordingly.

BB Per stage metrics

PRatio : Number of tasks in stage divided by number of cores. Represents degree of parallelism in the stage

TaskSkew : Duration of largest task in stage divided by duration of median task.Represents degree of skew in the stage

Stage-ID * WallClock% Task Count WallClockTime Measured MaxTaskMem PRatio TaskSkew 10%
0 2.00 1 00m 02s 0.0 KB 013 1.00 0.0
1 2.00 1 00m 02s 0.0 KB 013 0.0
2 94.00 850 01m 39s 1.2 MB 106.25 99.7
3 0.00 200 00m 00s 257.0 MB 25.00 110.50 0.0

SPARK JOIN SQL (Modified)

Uploaded At : 2019-07-14 9:00:19 AM

@ Untitled(288247031) & ¢ ©notags Joaded ot
Original File Size : 87 KB

Spark Command ~ Setel D Fon] @ efat > fip oo Original File name : application_1563088643227 0028.sparklens json

SQL v Query Statement v Efficiency Statistics ~ Simulation Per Stage Metrics Ideal Executors Aggregate Metrics

The total spark application wallclock time can be divided into time spent in driver and time spent in executors. When a spark application spends too much time in the driver, it wastes the executors compute time. Executors can also

1 select b.s_state, sum(c) as cnt from
waste compute time, because of lack of tasks or skew. And finally, critical path time is the minimum time that this application will take even if we give it infinite executors. Ideal application time is computed by assuming ideal

2 (select ss_store_sk, count(*) as ¢ from tpcds_orc_1000.store_sales group by ss_store sk) a
. artitioning (tasks == cores and no skew) of data in all stages of the application.
3 join tpeds_orc_1000.store b on (a.ss_store sk=b.s_store sk) perttonig | I . d oa

4 group by b.s_state
ld Driver vs Executor wallclock time - Critical and ideal application time

Diver Welldock Time Acutal Runtime
Executor Wallock Tine m 525 Crialpath om19s
Tote Welldock Time Idecl applcaon ine
mss Om 595
tm s Om 505 mss om0s Om 505 mSs
Time fin minutes) T (i minutes)
Uploaded At : 2019-07-14 9:00:19 AM
Original File Size : 87 KB
Original File name : ion_1563088643227.0028.sparklens.json
Efficiency Statistics ~ Simulation Per Stage Metrics Ideal Executors Aggregate Metrics
Not all stages are equally important. Start by looking at stages which occupy most of the wall clock time. Specifically look for lower PRatio and higher TaskSkew and fix accordingly.
B | Per stage metrics
PRatio : Number of tasks in stage divided by number of cores. Represents degree of parallelism in the stage
Taskskew : Duration of largest task in stage divided by duration of median task Represents degree of skew in the stage
Stage-ID * WallClock% Task Count WallClockTime Measured MaxTaskMem PRatio Taskskew 10%
0 5.00 1 00m 02s 0.0KB 013 1.00 0.0 »
1 5.00 1 00m 02s 0.0KB 013 1.00 00 »
2 84.00 850 00m 43s 1.0 MB 106.25 97.4 »
3 4.00 200 00m 02s 258.2 MB 25.00 5 0.0 »
4 0.00 200 00m 00s 257.0 MB 25.00 19.00 00 »

SPARKLENS IN ACTIO

PERFORMANCE TUNING 603 LINES OF UNF

Driver WallClock 41m 408 26%
Executor WallClock 117m 03s 74%
Total WallClock 158m 44s
Critical Path 127m 41s

Ideal Application 43m 328

» The application had too many stages (697)

» The Critical Path Time was 3X the Ideal Application Time

» Instead of letting spark write to hive table, the code was doing serial
writes to each partition, in a loop

 We changed the code to let spark write to partitions in parallel

O

o\®© o\°

Driver WallClock O2m 28s

Executor WallClock 24m 03s 91
Total WallClock 26m 32s
Critical Path 25m 27s

Ideal Application 04m 48s

30

15

0

10 20 50 80

100 110 120 150 200 300 400 500

Count

10

20

50

80

110
120
150
200
300
400

500

Time | Utilisation

ECCH available 320h 50m

ECCH used 31h 00m 9%
ECCH wasted 289h 50m 91%

ECCH: Executor Core Compute Hour

Stage-ID WallClock Core Task PRatio = ----- Task------
Stage% ComputeHours Count Skew StageSkew
0 0.27 00h 0Om 2 0.00 1.00 0.78
1 0.37 00h 0Om 10 0.01 1.05 0.85
33 85.84 03h 18m 10 0.01 1.07 1.00
Stage-1ID OIRatio |* ShuffleWrite% ReadFetch% GC% *|
0 0.00 |* 0.00 0.00 3.03 *|
1 0.00 |* 0.00 0.00 2.02 *|
33 0.00 |* 0.00 0.00 0.23 *|
3h 18m
10

800

SERVATIONS & ACTIONS

» 85% of time spent in a single stage with very low number of tasks.

* 91% compute wasted on executor side.

» Found that repartition(10) was called somewhere in code, resulting in
only 10 tasks. Removed it.

e Also increased the spark.sql.shuffle.partitions from default 200 to
800

Driver WallClock 02m 34s 26%
Executor WallClock 07m 13s 74 %
Total WallClock O9m 48s

Critical Path 07m 18s
Ideal Application 07m 09s

THANK YOU

