
Sparklens: Understanding the Scalability Limits
of Spark Applications
Ashish Dubey, Qubole

ABOUT PRESENTER
Ashish is a Big Data leader and practitioner with more than 15 years of industry experience.
Equipped with immense experience involving the design and development of petabyte-scale Big
Data applications, he is a seasoned technology architect with variegated experiences in customer
interfacing and technical leadership roles.

Ashish heads Qubole's Solutions Architecture team for International Markets, and works with a
number of enterprise customers in the EMEA, APAC and India regions. Prior to Qubole, Ashish
worked at Microsoft as an engineer in the Windows team. Later, he worked for Claraview
(Teradata), while leading their Big Data practice and helped to scale some of their Fortune 500
clients in different industry verticals such as finance, healthcare, retail and multimedia.

AGENDA

PERFORMANCE
TUNING PITFALLS

THEORY BEHIND
SPARKLENS

QUBOLE SPARKLENS
TUNING EXAMPLE

SPARK APPLICATION STRUCTURE

SPARK TUNING: COMMON APPROACHES

Brute-force Job Diagnosis and Experiments

● Change number of executors
● Memory parameter resizing for executors
● Driver memory
● Shuffle Partitions
● Join strategies
● And many more …………….

* Very unreliable approach

● Spark App UI Analysis
● Identify major bottlenecks
● Driver/Executor log analysis
● Iterative experiments based on above steps

* Costly in terms of time and developer cost

SPARK TUNING: PERFORMANCE KEY FACTORS

• Resource Utilization(Memory/CPU)
• Driver-only phases (Executors sitting idle)
• Tasks vs Num of Executors/Cores
• Skewed Tasks
• Scalability Limits (e.g. num-executors)

MINIMIZE DOING NOTHING

Driver Stage 1 Stage 2 Stage 3

Core1

Core2

Core3

Core4

Time

DRIVER SIDE COMPUTATIONS

Driver Stage 1 Stage 2 Stage 3

Core1

Core2

Core3

Core4

Time

WHAT DRIVER DOES

• File listing & split

computation

• Loading of hive tables

• FOC

• Collect

• df.toPandas()

NOT ENOUGH TASKS

Driver Stage 1 Stage 2 Stage 3

Core1

Core2

Core3

Core4

Time

CONTROLLING NUMBER OF TASKS

• HDFS block size

• Min/max split size

• Default Parallelism

• Shuffle Partitions

• Repartitions

NON-UNIFORM TASKS: SKEW

Driver Stage 1 Stage 2 Stage 3

Core1

Core2

Core3

Core4

Time

CRITICAL PATH: LIMIT TO SCALABILITY

Driver Stage 1 Stage 2 Stage 3

Core1

Core2

Core3

Core4

Time

IDEAL APPLICATION TIME

Driver Stage 1 Stage 2 Stage 3

Core1

Core2

Core3

Core4

Time

CONTROLLING NUMBER OF TASKS

• Spark application is either
executing in driver or in
parallel in executors

• Child stage is not executed
until all parent stages are
complete

• Stage is not complete until all
tasks of stage are complete

SPARKLENS

• An Open Source Spark Profiling Tool

• Runs with any Spark Deployment (Any
Cloud, On-Prem or Distribution)

• Helps you take the right decision without
many experiments (or trial and error)

USING SPARKLENS

—packages qubole:sparklens:0.3.0-s_2.11
—conf spark.extraListener=com.qubole.sparklens.QuboleJobListener

For inline processing, add following extra command line options to spark-submit

Old event log files (history server)
—packages qubole:sparklens:0.3.0-s_2.11 --class
com.qubole.sparklens.app.ReporterApp dummy-arg <eventLogFile>
source=history

Special Sparklens output files (very small file with all the relevant data)

—packages qubole:sparklens:0.3.0-s_2.11 --class
com.qubole.sparklens.app.ReporterApp dummy-arg <eventLogFile>

https://github.com/qubole/sparklens

SPARKLENS - FOUNDATION BRICKS

Critical Path
Time

Wall Clock
Time

Ideal*
Application
Time

SPARKLENS REPORTING SERVICE

http://sparklens.qubole.net/

http://sparklens.qubole.net/

SPARKLENS IN ACTION - I
PERFORMANCE TUNING - A SIMPLE SPARK SQL JOIN

SPARK JOIN SQL

SPARK JOIN SQL (Modified)

SPARKLENS IN ACTION - II
PERFORMANCE TUNING 603 LINES OF UNFAMILIAR SCALA CODE

SPARKLENS: FIRST PASS

 Driver WallClock 41m 40s 26%
 Executor WallClock 117m 03s 74%
 Total WallClock 158m 44s

 Critical Path 127m 41s
 Ideal Application 43m 32s

OBSERVATIONS & ACTIONS

• The application had too many stages (697)
• The Critical Path Time was 3X the Ideal Application Time
• Instead of letting spark write to hive table, the code was doing serial

writes to each partition, in a loop
• We changed the code to let spark write to partitions in parallel

SPARKLENS: SECOND PASS

 Driver WallClock 02m 28s 9%
 Executor WallClock 24m 03s 91%
 Total WallClock 26m 32s

 Critical Path 25m 27s
 Ideal Application 04m 48s

SPARKLENS PERFORMANCE PREDICTION

Count Time Utilisation

10 44m 51%

20 34m 33%

50 28m 16%

80 27m 10%

100 26m 8%

110 26m 8%

120 26m 7%

150 25m 5%

200 25m 4%

300 25m 3%

400 25m 2%

500 25m 1%

EXECUTOR UTILIZATION

ECCH available 320h 50m
ECCH used 31h 00m 9%
ECCH wasted 289h 50m 91%

ECCH: Executor Core Compute Hour

PER STAGE METRICS

 Stage-ID WallClock Core Task PRatio -----Task------
 Stage% ComputeHours Count Skew StageSkew

 0 0.27 00h 00m 2 0.00 1.00 0.78
 1 0.37 00h 00m 10 0.01 1.05 0.85

 33 85.84 03h 18m 10 0.01 1.07 1.00

 Stage-ID OIRatio |* ShuffleWrite% ReadFetch% GC% *|

 0 0.00 |* 0.00 0.00 3.03 *|
 1 0.00 |* 0.00 0.00 2.02 *|

 33 0.00 |* 0.00 0.00 0.23 *|

CCH 3h 18m

Task Count 10

Total Cores 800

OBSERVATIONS & ACTIONS

• 85% of time spent in a single stage with very low number of tasks.
• 91% compute wasted on executor side.
• Found that repartition(10) was called somewhere in code, resulting in

only 10 tasks. Removed it.
• Also increased the spark.sql.shuffle.partitions from default 200 to

800

SPARKLENS: THIRD PASS

 Driver WallClock 02m 34s 26%
 Executor WallClock 07m 13s 74%
 Total WallClock 09m 48s

 Critical Path 07m 18s
 Ideal Application 07m 09s

THANK YOU

