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SPARK APPLICATION STRUCTURE



SPARK TUNING: COMMON APPROACHES

Brute-force Job Diagnosis and Experiments 

● Change number of executors
● Memory parameter resizing for executors
● Driver memory 
● Shuffle Partitions
● Join strategies
● And many more …………….

* Very unreliable approach 

● Spark App UI Analysis
● Identify major bottlenecks
● Driver/Executor log analysis
● Iterative experiments based on above steps

* Costly in terms of time and developer cost



SPARK TUNING: PERFORMANCE KEY FACTORS

• Resource Utilization(Memory/CPU )
• Driver-only phases ( Executors sitting idle )
• Tasks vs Num of Executors/Cores
• Skewed Tasks
• Scalability Limits ( e.g. num-executors )



MINIMIZE DOING NOTHING
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DRIVER SIDE COMPUTATIONS
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WHAT DRIVER DOES

• File listing & split 

computation

• Loading of hive tables

• FOC 

• Collect 

• df.toPandas()



NOT ENOUGH TASKS
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CONTROLLING NUMBER OF TASKS

• HDFS block size 

• Min/max split size 

• Default Parallelism 

• Shuffle Partitions 

• Repartitions



NON-UNIFORM TASKS: SKEW
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CRITICAL PATH: LIMIT TO SCALABILITY
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IDEAL APPLICATION TIME
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CONTROLLING NUMBER OF TASKS

• Spark application is either 
executing in driver or in 
parallel in executors

• Child stage is not executed 
until all parent stages are 
complete

• Stage is not complete until all 
tasks of stage are complete 



SPARKLENS

• An Open Source Spark Profiling Tool

• Runs with any Spark Deployment ( Any 
Cloud, On-Prem or Distribution )

• Helps you take the right decision without 
many experiments ( or trial and error )



USING SPARKLENS

—packages qubole:sparklens:0.3.0-s_2.11
—conf spark.extraListener=com.qubole.sparklens.QuboleJobListener

For inline processing, add following extra command line options to spark-submit

Old event log files (history server)
—packages qubole:sparklens:0.3.0-s_2.11 --class 
com.qubole.sparklens.app.ReporterApp dummy-arg <eventLogFile> 
source=history

Special Sparklens output files (very small file with all the relevant data)

—packages qubole:sparklens:0.3.0-s_2.11 --class 
com.qubole.sparklens.app.ReporterApp dummy-arg <eventLogFile>

https://github.com/qubole/sparklens



SPARKLENS - FOUNDATION BRICKS
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SPARKLENS REPORTING SERVICE

http://sparklens.qubole.net/

http://sparklens.qubole.net/


SPARKLENS IN ACTION - I
PERFORMANCE TUNING - A SIMPLE SPARK SQL JOIN



SPARK JOIN SQL



SPARK JOIN SQL (Modified )



SPARKLENS IN ACTION - II
PERFORMANCE TUNING 603 LINES OF UNFAMILIAR SCALA CODE



SPARKLENS: FIRST PASS

 Driver WallClock    41m 40s  26%
 Executor WallClock 117m 03s  74%
 Total WallClock    158m 44s
      
 Critical Path      127m 41s
 Ideal Application   43m 32s



OBSERVATIONS & ACTIONS

• The application had too many stages (697)
• The Critical Path Time was 3X the Ideal Application Time
• Instead of letting spark write to hive table, the code was doing serial 

writes to each partition, in a loop
• We changed the code to let spark write to partitions in parallel



SPARKLENS: SECOND PASS

 Driver WallClock   02m 28s    9%
 Executor WallClock 24m 03s   91%
 Total WallClock    26m 32s
      
 Critical Path      25m 27s
 Ideal Application  04m 48s



SPARKLENS PERFORMANCE PREDICTION

Count Time Utilisation 

10 44m 51%

20 34m 33%

50 28m 16%

80 27m 10%

100 26m 8%

110 26m 8%

120 26m 7%

150 25m 5%

200 25m 4%

300 25m 3%

400 25m 2%

500 25m 1%



EXECUTOR UTILIZATION

ECCH available 320h 50m
ECCH used       31h 00m  9%
ECCH wasted    289h 50m 91%

ECCH: Executor Core Compute Hour



PER STAGE METRICS

 Stage-ID WallClock  Core          Task   PRatio    -----Task------
          Stage%     ComputeHours  Count            Skew   StageSkew 
                                               
      0    0.27         00h 00m       2    0.00     1.00     0.78    
      1    0.37         00h 00m      10    0.01     1.05     0.85
         
     33   85.84         03h 18m      10    0.01     1.07     1.00 

 Stage-ID      OIRatio  |* ShuffleWrite% ReadFetch%   GC%  *|
                                                        
      0        0.00     |*   0.00           0.00     3.03  *|
      1        0.00     |*   0.00           0.00     2.02  *|

     33        0.00     |*   0.00           0.00     0.23  *|

CCH 3h 18m

Task Count  10

Total Cores  800



OBSERVATIONS & ACTIONS

• 85% of time spent in a single stage with very low number of tasks.
• 91% compute wasted on executor side.
• Found that repartition(10) was called somewhere in code, resulting in 

only 10 tasks. Removed it.
• Also increased the spark.sql.shuffle.partitions from default 200 to 

800



SPARKLENS: THIRD PASS

 Driver WallClock   02m 34s   26%
 Executor WallClock 07m 13s   74%
 Total WallClock    09m 48s
      
 Critical Path      07m 18s
 Ideal Application  07m 09s



THANK YOU


