
Data Architecture 101
for Your Business
Bence Faludi - bence@subninja.org

mailto:bence@subninja.org

Setting up your entire data architecture
should be straightforward task.

… how to collect our frontend data? ...

… which engine should we use? ...

… or just pick a visualisation tool ...

Let’s just be realistic and bullshit-free!

Big Data Mess

1. Too many products are available. Most of them claim they solve all data
problems your company encounter; and deliver immediate insights and
business value. But NONE is true.

2. Organisational data is mostly unstructured and not clean. It is not ready for
consumption.

3. Companies are using various data sources parallely but rarely investing in
centralisation - and want this behaviour from 3rd party tools.

4. Easy to stuck with a bad, inefficient and costly architecture. It’s hard, slow
and expensive to get rid of them afterwards and clean up the hacks.

Bence Faludi
Independent contractor
bence@subninja.org

My background

- Contractor for various companies.
- Data Engineer at Facebook
- Data Scientist at Microsoft
- Data Engineer at Wunderlist
- etc…

Worked with data sizes from few
1000s to billions of active users.

Contributor of night-shift and metl
open source ETLs.

mailto:bence@subninja.org

Many tools aim to merge these layers and
make it elective.

Questions to always ask

1. Do you handle unclean data?
2. How quick will all those transformations and queries be?
3. Where is the cache stored?
4. Does it affect the performance of our database by running

parallel, or inefficient queries?
5. What do we need to prepare to make the product effective?
6. How big exactly is the data loss of the tracker?
7. Can we export the data model we made within the system?

Never believe in hype, or shiny web pages
when selecting products. They want to lock

you into their ecosystem.

What can we do?

Start of a product

Looking for a weekly
reports and a KPI
dashboard

Want to make decisions
based on information

Anomaly detection to see
issues right away

Want a platform for
forensic analysis to speed
up product development

Just about to start your business

1. Evaluate the best stack to use, and select products that work
together.

2. Focus on centralisation from the beginning. Raw data access is a key.
3. Make sure you design all events from the backend and the frontend

that are needed for your KPIs. You don’t want to measure everything!
4. Step by step, don’t shoot for ML when you don’t even have proper

logging or aggregations.
5. You only need Data Engineers. Data Scientist can join later when the

leg work will be done.

Recognise you want to use
your data more excessively.

Transition into a
data-driven company.

You are road-blocked by your
current setup and looking for
new opportunities /
improvements.

Changing your ongoing business

1. Do not be afraid moving away from your current way of doing things
but select solutions that will not lock you in. Buying a new product
will not solve your issues, it will just make larger mess.

2. Prepare for a long journey. Ship wins step by step by migrating over
already existing services and enabling new (previously not possible)
functionality.

3. Centralise data sources into a single Data Warehouse instead of
using visualisation tools that can “connect to everything”.

4. Train your Data Scientists and Data Analytists to use SQL.

What does a good
data architecture

provide?

Data collection

● Ownership and access of data: we own the data and the data access is not
bounded to active subscriptions.

● Near-real time raw data: have access to unfiltered raw data within minutes.

● No data sampling: all incoming data is queryable and not just a subset.

● Ad blockers: Ad blockers responsible for many lost events. Keep in mind.

● Personal Identification Information: possible to turn off PII scraping

● Data model: custom events can be sent in not-flat format (e.g.: JSON)

● SDKs with persistent layer: collected logs are stored on the offline device.

Storage and flow

● Schedulable pipelines with dependencies: pipelines run at specified times
after all dependencies met. Provides notifications, alerts, logging, SLAs, and
easily extendable with other sources.

● Collected data transformation as minimal as it can be, and the rest can be
done within the database engine.

● Raw level data stored on the storage, but accessible via the query engine.

● Data Partitions are possible to reduce the size of queried data, and keep
previous versions of cumulative or event based tables.

● Data Reprocess: recrunch numbers any time when business goals change or
to fix errors.

Database/Query engine

● Read Benchmarks about performance and
pricing. Do the math…

● Look for distributed query engines.

● SQL compatibility, you don’t want to learn
something new.

● Support of complex data-types, and CUBE
grouping make your life easier. Partitions
are key.

● Encryption and compression matter.

Snowflake vs Star Schema

* pictures from wikipedia

Data model

Snowflake schema and Star schema use dimension
tables to describe data aggregated in a fact table, but
dimension tables are denormalised in snowflake
schema.

● Star schema is better for analytics: reduce
query complexity, and speed up queries

● Flat truth-tables: enable quick overview for your
business units by making flat tables containing
your criterias. Partition it wisely.

● Store your aggregations as Cubes.

Prepare your aggregations and metrics

-- Grouping sets
SELECT Country, Region, SUM(Sales) AS TotalSales
FROM Sales
GROUP BY GROUPING SETS (ROLLUP (Country, Region), CUBE (Country, Region));

-- Cubes
SELECT Country, Region, SUM(Sales) AS TotalSales
FROM Sales
GROUP BY CUBE (Country, Region);

You can even do this within SQL, no need for fancy visualisation tools. Materialise your
metrics for all required dimensions to load your dashboards as fast as possible.

* Azure SQL Data Warehouse SQL examples

Visualisation

● Self-hosted vs Hosted
● Support native SQL execution for advanced users - they make the complex

reports, and they don’t want to struggle with crappy and limited interfaces.
● Provide interactive query builder for beginners - you can’t expect everyone to

be a SQL magician, and you want people to drill-down into specific reports
and findings.

● No middle-layer modeling language: it’s a pain to debug, and learn. SQL is still
the most efficient and most widely known option.

+ anything your business needs (email reports, warnings, public access, etc.).

Example of
compatible data

architecture stack
on AWS

Collect

Data storage

Data flow / ETL

Database / Query engine

Visualisation tool

Amazon Kinesis Data Firehose

Amazon S3

Apache Airflow

Amazon EMR - Presto (Amazon Athena for large jobs)

Apache Superset

Amazon Kinesis Data Firehose to S3

It captures and loads data in near real-time. It loads data into Amazon S3 within a
minute after data sent to the server. It provides SDKs for Android, iOS, Web (via
Amplify JS), and you can integrate backend services as well.

* picture from AWS website

Amazon EMR - Presto

“Presto is a distributed SQL query engine designed to query large data sets distributed over one or
more heterogeneous data sources.”

Presto is a distributed system that runs on Hadoop. We will use Amazon S3 to store, and query
data directly. All incoming data will be accessible by the querying engine immediately after the data
was written onto S3. It’s quicker, and cheaper than Amazon Redshift.

Coordinator

Worker

Worker

Amazon S3
(HDFS)

Client

Hive
Metastore

Amazon EMR - Presto

Presto supports lambda functions, cubes, grouping sets, various analytical functions, and
complex data-types such as maps, and arrays.
SELECT

 GROUPING(u.platform) AS "grouping_id",

 MAP_FROM_ENTRIES (ARRAY[('platform', u.platform)]) AS "dimensions",

 CAST(COUNT(DISTINCT u.device_id) AS DOUBLE) AS "devices",

 CAST(SUM(COUNT(DISTINCT u.device_id)) OVER (

 PARTITION BY GROUPING(u.platform)

) AS DOUBLE) AS "total_devices",

FROM data.user_activities AS u

WHERE u.ds = '{{ ds }}'

GROUP BY GROUPING SETS ((), (u.platform))

Apache Airflow

Airflow is a Python-based workflow
management framework to
automate scripts in order to
perform tasks.

It’s extendable, and provides a good
monitoring interface - but quite
complex.

Use night-shift instead for
maximum simplicity.

Apache Superset

It’s a free, self-hosted visualisation tool, with an
easy-to-use interface for exploring data.

Perfect for collaboration between teams - and to
save money before you commit yourself to use a
more advanced enterprise-ready tool.

Support native SQL execution but provide interface
for interactive data exploration.

Personal recommendation is to use Chartio
afterwards.

* picture from https://superset.incubator.apache.org/

https://superset.incubator.apache.org/

* picture from https://superset.incubator.apache.org/

https://superset.incubator.apache.org/

Collect

Data storage

Data flow / ETL

Database / Query engine

Visualisation tool

Amazon Kinesis Data Firehose

Amazon S3

Apache Airflow

Amazon EMR - Presto (Amazon Athena for large jobs)

Apache Superset or anything else

This is just one basic system of the many.

Things to avoid

Don’t

● Use a marketing tool as your main event tracker - sorry but no Adobe
Analytics, or Google Analytics.

● Build a data warehouse in a standard relational database. It was not
meant for that, and will crash under the data volume.

● Store all raw events within a table without partitions.
● Measure all the events of the universe - because “we (might) need it”.
● Do all your data transformations within a visualisation tool or in Excel.
● Over-engineer & build your own ETL - use something that is done.

Recap

1. Putting together a data infrastructure can be straightforward if we are
looking for products that work together, and follow the guidance on required
product abilities.

2. Don’t believe in hype or shiny web pages when selecting products. No
product can solve your problems instantly, you must put together the basics
step by step.

3. Centralisation is key. Clean and organise your data - do the legwork!
4. Make sure you own the data.
5. Invest in training your people to learn SQL.

Thank you!
bence@subninja.org

mailto:bence@subninja.org

