Data Architecture 101 for Your Business

Bence Faludi - bence@subninja.org

Setting up your **entire data architecture should be** straightforward task. ... how **to collect** our frontend data? ...

Benefits

... which engine should we use? ...

... or just pick a **visualisation** tool ...

Superset Resources

· Superset's Github, note that we use Github for issue tracking

- Supercet's contribution guidelines and code of conduct on Citbul

LET THE CLOUDS MAKE YOUR LIFE EASIER

Let's just be **realistic** and **bullshit-free**!

Big Data Mess

- 1. **Too many products** are available. Most of them claim they solve all data problems your company encounter; and deliver immediate insights and business value. But NONE is true.
- 2. Organisational data is mostly **unstructured and not clean**. It is not ready for consumption.
- 3. Companies are using **various data sources parallely** but rarely investing in centralisation and want this behaviour from 3rd party tools.
- 4. Easy to **stuck with a bad, inefficient and costly architecture**. It's hard, slow and expensive to get rid of them afterwards and clean up the hacks.

Bence Faludi Independent contractor

bence@subninja.org

My background

- Contractor for various companies.
- Data Engineer at Facebook
- Data Scientist at Microsoft
- Data Engineer at Wunderlist
- etc...

Worked with data sizes from few 1000s to billions of active users.

Contributor of **night-shift** and **metl** open source ETLs.

Many tools aim to **merge these layers** and **make it elective**.

Questions to always ask

- 1. Do you handle **unclean data**?
- 2. **How quick** will all those transformations and queries be?
- 3. Where is the **cache stored**?
- 4. Does it **affect the performance** of our database by running parallel, or inefficient queries?
- 5. What do we need to prepare to make the product effective?
- 6. How big exactly is the **data loss of the tracker**?
- 7. Can we **export the data model** we made within the system?

Never believe in **hype**, or **shiny web pages** when selecting products. They want to lock you into their ecosystem.

What can we do?

Anomaly detection to see issues right away

Start of a product

Want to make decisions based on information

Looking for a weekly reports and a KPI dashboard Want a platform for forensic analysis to speed up product development

Just about to start your business

- 1. **Evaluate the best stack to use**, and select products that work together.
- 2. Focus on centralisation from the beginning. Raw data access is a key.
- 3. Make sure you **design all events** from the backend and the frontend that are needed for your KPIs. You don't want to measure everything!
- 4. **Step by step**, don't shoot for ML when you don't even have proper logging or aggregations.
- 5. You **only need Data Engineers**. Data Scientist can join later when the leg work will be done.

You are road-blocked by your current setup and looking for new opportunities / improvements.

Changing your ongoing business

- Do not be afraid moving away from your current way of doing things but select solutions that will not lock you in. Buying a new product will not solve your issues, it will just make larger mess.
- 2. Prepare for a long journey. **Ship wins step by step** by migrating over already existing services and enabling new (previously not possible) functionality.
- 3. **Centralise data sources** into a single Data Warehouse instead of using visualisation tools that can "connect to everything".
- 4. Train your Data Scientists and Data Analytists to **use SQL**.

What does a good data architecture provide?

Data collection

- **Ownership and access of data**: we own the data and the data access is not bounded to active subscriptions.
- Near-real time raw data: have access to unfiltered raw data within minutes.
- No data sampling: all incoming data is queryable and not just a subset.
- Ad blockers: Ad blockers responsible for many lost events. Keep in mind.
- **Personal Identification Information**: possible to turn off PII scraping
- **Data model**: custom events can be sent in not-flat format (e.g.: JSON)
- SDKs with persistent layer: collected logs are stored on the offline device.

Storage and flow

- Schedulable pipelines with dependencies: pipelines run at specified times after all dependencies met. Provides notifications, alerts, logging, SLAs, and easily extendable with other sources.
- **Collected data transformation** as minimal as it can be, and the rest can be done within the database engine.
- **Raw level data** stored on the storage, but accessible via the query engine.
- **Data Partitions** are possible to reduce the size of queried data, and keep previous versions of cumulative or event based tables.
- **Data Reprocess**: recrunch numbers any time when business goals change or to fix errors.

Database/Query engine

- Read **Benchmarks** about performance and pricing. Do the math...
- Look for **distributed query engines**.
- **SQL compatibility**, you don't want to learn something new.
- Support of **complex data-types**, and **CUBE** grouping make your life easier. **Partitions** are key.
- Encryption and compression matter.

HOW TO WRITE A CV

Leverage the NoSQL boom

Snowflake vs Star Schema

Data model

Snowflake schema and **Star schema** use dimension tables to describe data aggregated in a fact table, but dimension tables are denormalised in snowflake schema.

- Star schema is better for analytics: reduce query complexity, and speed up queries
- Flat truth-tables: enable quick overview for your business units by making flat tables containing your criterias. Partition it wisely.
- Store your **aggregations as Cubes**.

HOW TO CREATE A STABLE DATA MODEL

Prepare your aggregations and metrics

You can even **do this within SQL**, no need for fancy visualisation tools. **Materialise your metrics** for all required dimensions to load your dashboards as fast as possible.

-- Grouping sets SELECT Country, Region, SUM(Sales) AS TotalSales FROM Sales GROUP BY GROUPING SETS (ROLLUP (Country, Region), CUBE (Country, Region));

-- Cubes SELECT Country, Region, SUM(Sales) AS TotalSales FROM Sales GROUP BY CUBE (Country, Region);

* Azure SQL Data Warehouse SQL examples

Visualisation

- Self-hosted vs Hosted
- Support **native SQL execution** for advanced users they make the complex reports, and they don't want to struggle with crappy and limited interfaces.
- Provide **interactive query builder** for beginners you can't expect everyone to be a SQL magician, and you want people to drill-down into specific reports and findings.
- No middle-layer modeling language: it's a pain to debug, and learn. SQL is still the most efficient and most widely known option.
- + anything your business needs (email reports, warnings, public access, etc.).

Example of compatible data architecture stack on AWS

Collect	Amazon Kinesis Data Firehose		
Data storage	Amazon S3		
Data flow / ETL	Apache Airflow		
Database / Query engine	Amazon EMR - Presto (Amazon Athena for large jobs)		
Visualisation tool	Apache Superset		

Amazon Kinesis Data Firehose to S3

It captures and loads data in near real-time. It **loads data into Amazon S3 within a minute** after data sent to the server. It provides SDKs for Android, iOS, Web (via Amplify JS), and you can integrate backend services as well.

* picture from AWS website

Amazon EMR – Presto

"Presto is a **distributed SQL query engine** designed to query large data sets distributed over one or more heterogeneous data sources."

Presto is a distributed system that runs on Hadoop. We will use **Amazon S3** to store, and query data directly. All incoming data will be accessible by the querying engine immediately after the data was written onto S3. It's quicker, and cheaper than Amazon Redshift.

Amazon EMR – Presto

Presto supports **lambda functions**, **cubes**, **grouping sets**, various **analytical functions**, and **complex data-types** such as maps, and arrays.

```
SELECT
```

```
GROUPING (u.platform) AS "grouping_id",
MAP_FROM_ENTRIES (ARRAY[('platform', u.platform)]) AS "dimensions",
CAST (COUNT (DISTINCT u.device_id) AS DOUBLE) AS "devices",
CAST (SUM (COUNT (DISTINCT u.device_id)) OVER (
PARTITION BY GROUPING (u.platform)
) AS DOUBLE) AS "total_devices",
FROM data.user_activities AS u
WHERE u.ds = '{{ ds }}'
GROUP BY GROUPING SETS ((), (u.platform))
```

Apache Airflow

Airflow is a Python-based **workflow management framework** to

automate scripts in order to perform tasks.

It's extendable, and provides a good monitoring interface - but quite complex.

Use **night-shift** instead for maximum simplicity.

Apache Superset

It's a free, **self-hosted visualisation tool**, with an easy-to-use interface for exploring data.

Perfect for **collaboration between teams** - and to save money before you commit yourself to use a more advanced enterprise-ready tool.

Support native SQL execution but provide interface for interactive data exploration.

Personal recommendation is to use **Chartio** afterwards.

🛇 Superset 🐗 Security 🗸 🖌 Manage 🗸 🛢 Sources 🗸 🕍 Charts 🚳 Dashboards 🛽 🕹 SQL Lab 🗸

Growth Analysis	Scratchpad 🗸 🖸					
Database: main	× •		b.dashboard_id, a shboards a	.dashboard_t	itle, b.slice_id, c.slice_name	
Schema: superset	× *	3 JOIN da	<mark>shboard_slices b(</mark> ices c on c.id = b			
Add a table (43)	•				lashboard_title column DATABASE sql latasource_type column latasource_name column	
slices 🗆	Q ↓A The x				latasource_id column	
created on	DATETIME		(
changed_on	DATETIME	C Run Query	🖺 Save Query 🛛 🖡	Share Query		parameters 00:00:00.15
id 🔍	INTEGER					
slice_name	VARCHAR	Results Query History Preview for slices Preview for dashboards				
datasource_type	VARCHAR					
datasource_name	VARCHAR					
viz_type	VARCHAR	Visualize E.CSV Search Results				
params	TEXT					
created_by_fk %	INTEGER	dashboard_id	dashboard_title	slice_id	slice_name	
changed_by_fk % 📕	INTEGER	2	Births	882	Girls	
description	TEXT					
cache_timeout	INTEGER	2	Births	883	Boys	
perm	VARCHAR	2	Births	884	Participants	
datasource_id	INTEGER	-	Dirtito	004	r anopano	
		2	Births	885	Genders	
dashboards ⊟	♀ ↓☆ № ×	2	Births	886	Genders by State	
created_on	DATETIME				-	
changed_on	DATETIME	2	Births	887	Trends	
id 🔍	INTEGER	2	Births	888	Average and Sum Trends	
dashboard_title	VARCHAR		27.7			
position_json	TEXT	2	Births	889	Title	
created_by_fk %	INTEGER	2	Births	890	Name Cloud	
changed_by_fk %	TEXT					
CSS						

* picture from https://superset.incubator.apache.org/

📕 O 4 v 🛎 v 📕

Collect	Amazon Kinesis Data Firehose		
Data storage	Amazon S3		
Data flow / ETL	Apache Airflow		
Database / Query engine	Amazon EMR - Presto (Amazon Athena for large jobs)		
Visualisation tool	Apache Superset or anything else		

This is just **one** basic system of the many.

Things to avoid

Don't

- Use a marketing tool as your main event tracker sorry but no Adobe Analytics, or Google Analytics.
- Build a data warehouse in a standard relational database. It was not meant for that, and will crash under the data volume.
- Store all raw events within a table without partitions.
- Measure all the events of the universe because "we (might) need it".
- Do all your data transformations within a visualisation tool or in Excel.
- Over-engineer & build your own ETL use something that is done.

Recap

Thank you! bence@subninja.org

- 1. Putting together a data infrastructure can be straightforward if we are looking for **products that work together**, and follow the guidance on required product abilities.
- 2. Don't believe in hype or shiny web pages when selecting products. No product can solve your problems instantly, **you must put together the basics** step by step.
- 3. **Centralisation** is key. Clean and organise your data do the legwork!
- 4. Make sure you **own the data**.
- 5. Invest in training your people to **learn SQL**.