= Microsoft

“Taking recommendation to the masses” with
Microsoft/Recommenders

Le Zhang Data Scientist, Microsoft

Acknowledgement:
Andreas Argyriou, Dan Ciborowski, Markus Cosowicz, Miguel Gonzalez-Fierro, Scott Graham, Nikhil Joglekar,

Max Kaznady, Jianxun Lian, Micro Milletari, Jun Ki Min, Jeremy Reynolds, Xing Xie, and Tao Wu

Objective

e “Taking recommendation technology to the masses”

* Helping researchers and developers to quickly select, prototype, demonstrate, and
productionize a recommender system

* Accelerating enterprise-grade development and deployment of a recommender system
into production

» Key takeaways of the talk
» Systematic overview of the recommendation technology from a pragmatic perspective

* Best practices (with example codes) in developing recommender systems
 State-of-the-art academic research in recommendation algorithms

Outline

« Recommendation system in modern business (10min)
 Recommendation algorithms and implementations (20min)

* End to end example of building a scalable recommender (10min)
* Q& A (5min)

Recommendation system in
modern business

“35% of what consumers purchase on Amazon and 75% of what they watch on
Netflix come from recommendations algorithms”

McKinsey & Co

Recommendation everywhere

Pinterest
@ | NETFLIX
THOMSON

You b Blng rrrrr @ D y’\r:l;(;;?(fg];%S tl’aveloka T
=EEEl | @) criteo m " Q&
f

AasosS’ ... Booking.c

ooooooooooooooooooooo

T af
\ A (]| SN e /_.
\ ¥ i Vi (5 \
\ () / &
v is!
A\ £ |
\c=".f I d o\
N) N

amazon

Recommendation everywhere

Challenges

Limited resource

There is limited reference
and guidance to build a
recommender system on
scale to support
enterprise-grade
scenarios

Fragmented solutions

Packages/tools/modules off-
the-shelf are very

fragmented, not scalable,
and not well compatible with
each other

Fast-growing area

New algorithms sprout
every day — not many
people have such
expertise to implement
and deploy a
recommender by using
the state-of-the-arts
algorithms

Microsoft/Recommenders

 Microsoft/Recommenders

* Collaborative development efforts of Microsoft Cloud & Al data scientists, Microsoft
Research researchers, academia researchers, etc.

Github url: https://github.com/Microsoft/Recommenders

Contents
 Utilities: modular functions for model creation, data manipulation, evaluation, etc.
* Algorithms: SVD, SAR, ALS, NCF, Wide&Deep, xDeepFM, DKN, etc.
* Notebooks: HOW-TO examples for end to end recommender building.
Highlights
e 3700+ stars on GitHub
* Featured in YC Hacker News, O’Reily Data Newsletter, GitHub weekly trending list, etc.

Any contribution to the repo will be highly appreciated!
* Create issue/PR directly in the GitHub repo
* Send email to RecoDevTeam@service.microsoft.com for any collaboration

https://github.com/Microsoft/Recommenders
mailto:RecoDevTeam@service.microsoft.com

Recommendation algorithms anad
implementations

“Share our similarities, celebrate our differences”
M. Scott Peck

Recommendation models

e Various recommendation scenarios
* Collaborative filtering, context-aware models, knowledge-aware model,...

* Integrating both Microsoft invented/contributed and excellent third-party
tools
* SAR, xDeepFM, DKN, Vowpal Wabbit (VW), LightGBM,...
* Wide&Deep, ALS, NCF, FastAl, Surprise, ...

* No best model, but most suitable model

Collaborative Filtering

e User feedback from multiple users in a

collaborative way to predict missing
feedback

* Intuition: users who give similar ratings
to the same items will have similar
preferences - should produce similar
recommendations to them

* E.g. users A and B like western movies
but hate aCtIOn fl|mS, users C and D Ilke Figure 1. The user-oriented neighborhood method. Joe likes the three

movies on the left. To make a prediction for him, the system finds similar

users who also liked those movies, and then determines which other movies

CO m e d i e S b ut h a te d r‘a m a S they liked. In this case, all three liked Saving Private Ryan, so that is the first

recommendation. Two of them liked Dune, so that is next, and so on.

Y Koren et al, Matrix factorization techniques for recommendation systems, IEEE Computer 2009

Collaborative filtering (cont'd)

* Memory based method
* Microsoft Smart Adaptive Recommendation (SAR) algorithm

* Model based methods

e Matrix factorization methods
e Singular Value Decomposition (SVD)
* Spark ALS implementation

* Neural network-based methods
e Restricted Boltzmann Machine (RBM)
* Neural Collaborative Filtering (NCF)

Collaborative Filtering

* Neighborhood-based methods - Memory-based

* The neighborhood-based algorithm calculates the similarity between two users or
items and produces a prediction for the user by taking the weighted average of all
the ratings.

e Two typical similarity measures:

Pearson correlation similarity: Cosine similarity:
Z{iEIx }(Tx,i_fx)(ry,i_fy)) iel Tx,iTy,i
s(,y) = — — s(,y) = - { xyz} -
\/Z{ielxy}(rx,i_rx) \/Z{ielxy}(ry,i_ry) \/Z{iEIxy} rx,i\[z{ielxy} ry,i
* Two paradigms:
UserCF: ltemCF:

Vui = z s(u, U)Yvi

vES(u,K)nI(i) Yui = z S(], l)yuj

JeS(i,K)NI(u)

Smart Adaptive Recommendation (SAR)

* An item-oriented memory-based algorithm from Microsoft

Transaction data [tem-item similarity matrix

User Iiem Time Event

(opt)remove seen
ftems
—
® =
—
—
User-item affinity matrix
Top-k recommendations
User Iteml Item?2
o

{opt) time decay

https://github.com/Microsoft/Recommenders/blob/master/notebooks/02 model/sar deep dive.ipynb

https://github.com/Microsoft/Recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR (cont’d)

e SAR algorithm (the CF part)

* |t deals with implicit feedback

* ltem-to-item similarity matrix
* Co-occurrence
e Lift similarity
e Jaccard similarity
e User-to-item affinity matrix
e Count of co-occurrence of user-item interactions

* Weighted by interaction type and time decay
k 1 to—tg
aij = 21w T
 Recommendation
* Product of affinity matrix and item similarity matrix

* Rank of product matrix gives top-n
recommendations

https://github.com/Microsoft/Product-Recommendations/blob/master/doc/sar.md
https://github.com/Microsoft/Recommenders/blob/master/notebooks/02 model/sar de
ep dive.ipynb

UserID Item ID Time Event
User 1 ltem 1 2015/06,/20T10:00:00 Click
User 1 ltem 1 2015/06/28T11:00:00 Click
User 1 ltem 2 2015/08/28T11:01:00 Click

User 1 [tem 2 2015/08/28T12:00:01 Purchase

Original feedback data

Item 1 Item 2 Item 3 Item4 Item5
390 | 300 | 230 Item 1 5 3 4

2.00 2.50 5.00 2.00
Item 2

2.50 4.00 4.50
5.00 3.00 4.50

Item 4

4 3
Item 3 4 3 4
2 3
4.00 3.00 2.00 4.00 350
1 1

Item 5 2

c c c c c c c
w @ w o o o @
1] 1] 1] @ @ m I
R Y N S

User affinity matrix

User 1 recommendation score of item 4
rec(User 1, Item 4)

= sim(ltem 4, Item 1) * aff(User 1, Item 1)

+ sim(ltem 4, Item 2) * aff(User 1, Item 2)
+ sim(ltem 4, Item 3) * aff(User 1, Item 3)
+sim(ltem 4, Item 4) * aff(User 1, Item 4)
+ sim(ltem 4, Item 5) * aff(User 1, Item 5)
=3*5+2%3+3%*25+4*0+2%*0
=15+6+75+0+0=28.5

3

2
3
4
2

Item 1 Item 2 Item 3 ltem 4 Item 5

2

1
1
2
3

ltem similarity matrix

https://github.com/Microsoft/Product-Recommendations/blob/master/doc/sar.md
https://github.com/Microsoft/Recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR Properties

* Advantages
* Free from machine learning
* Free from feature collection
* Explainable results

* Disadvantages
e Sparsity of affinity matrix
* User-item interaction is usually sparse

* Scalability of matrix multiplication
e User-item matrix size grows with number of users and items
* Matrix multiplication can be a challenge

SAR practice with Microsoft/Recommenders
* Import packages

In [1]: | # set the environment path to find Recommenders
import sys
sys.path.append("../../")

import itertools
import logging
import os

import numpy as np
import pandas as pd
import papermill as pm

from reco_utils.dataset import movielens

from reco_utils.dataset.python_splitters import python stratified split

from reco_utils.evaluation.python_evaluation import map at k, ndcg at k, precision at k, recall at k
from reco_utils.recommender.sar.sar_singlenode import SARSingleNode

print("System version: {}".format(sys.version))
print("Pandas version: {}".format(pd. version))

System version: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, ©1:22:34)
[GCC 7.3.0]
Pandas version: ©.24.2

Source code: https://github.com/microsoft/recommenders/blob/master/notebooks/02 model/sar deep dive.ipynb

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR practice with Microsoft/Recommenders

* Prepare dataset

In [3]: data = movielens.load pandas_df(
s1ze=MOVIELENS DATA SIZE,
header=['UserId', 'MovieId', 'Rating', 'Timestamp'],
title col="Title’
)

Convert the float precision to 32-bit in order to reduce memory consumption
data.loc[:, 'Rating’'] = data['Rating’].astype(np.float32)

data.head()

4.93MB [©©:02, 2.36MB/s]

out[3]:

Userld | Movield | Rating | Timestamp | Title
0196 242 3.0 881250949 |Kolya (1996)
1(63 242 3.0 875747190 |Kolya (1996)
2226 242 5.0 883888671 |Kolya (1996)
3154 242 3.0 879138235 |Kolya (1996)
4| 306 242 5.0 876503793 |Kolya (1996)

In [5]: train, test = python stratified split(data, ratio=0.75, col user=header["col user”], col item=header["col

item"], seed=42)

Source code: https://github.com/microsoft/recommenders/blob/master/notebooks/02 model/sar deep dive.ipynb

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR practice with Microsoft/Recommenders

e Fit a SAR model

In [6]: # set lLog level to INFO
logging.basicConfig(level=logging.DEBUG,
format="%(asctime)s %(levelname)-8s %(message)s’)

model = SARSingleNode(
similarity type="jaccard”,
time decay_ coefficient=30,
time now=None,
timedecay formula=True,
**header

In [7]: model.fit(train)

2019-85-28 22:40:09,133 INFO Collecting user affinity matrix
2019-05-28 22:40:09,137 INFO Calculating time-decayed affinities
2019-85-28 22:40:09,178 INFO Creating index columns

2019-85-28 22:409:09,188 INFO Building user affinity sparse matrix
2019-05-28 22:40:09,194 INFO Calculating item co-occurrence
2019-85-28 22:40:09,412 INFO Calculating item similarity
2019-85-28 22:40:09,413 INFO Using jaccard based similarity
2019-85-28 22:40:09,534 INFO Done training

Source code: https://github.com/microsoft/recommenders/blob/master/notebooks/02 model/sar deep dive.ipynb

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR practice with Microsoft/Recommenders

* Get the top k recommendations

In [8]: top_k = model.recommend k items(test, remove seen=True)

In [18]: # all ranking metrics have the same arguments

args = [test, top k]

kwargs = dict(col user='UserId',
col item='MovielId',
col rating="Rating’,
col prediction="Prediction’,
relevancy method="top k',
k=TOP_K)

eval map = map_at k(Fargs, **kwargs)

eval ndcg = ndcg_at k(*args, **kwargs)

eval precision = precision_at k(®args, **kwargs)
eval recall = recall at k(*args, **kwargs)

In [11]: print(f"Model:",
f"Top K:\t\t {TOP_K}",
t'map:\t\t {eval_map:f}",
f"NDCG: \t\t {eval_ndcg:f}",
f"Precision@K:\t {eval_precision:f}",
t"Recall@k:\t {eval_recall:f}", sep="\n")

Model:

Top K: 10

MAP : 9.895544
NDCG: 9.350232
Precisionk: 9.305726
Recallfk: 0.164690

Source code: https://github.com/microsoft/recommenders/blob/master/notebooks/02 model/sar deep dive.ipynb

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

Matrix factorization

* The simplest way to model latent factors is as user & item vectors that multiply
(as inner products)

* Learn these factors from the data and use as model, and predict an unseen
rating of user-item by multiplying user factor with item factor
* The matrix factors U, V have f columns, rows resp.
* The number of factors fis also called the rank of the model

" Movies
Stochastic Gradient Descent (SGD) 3 e~
Parameters are updated in the opposite - ~ 5 q .
direction of gradient: u ' = l

S—— Pu
gi < qi+7Y-(eui- pu—A-qi) Movies

pu(—pu+'Y'(€uf'QE—7L'pu)

https://www.datacamp.com/community/tutorials/matrix-factorization-names

Neural collaborative filtering (NCF)

* Neural collaborative filtering

e Neural network-based architecture to model latent features

* Generalization of MF based method

* Multi-Layer Perceptron (MLP) can be incorporated for dealing with non-linearities

uy(1|1]1 1 I
u 1 1 7]
2 2
u; 111 3
(- 1 T T 1 |
Uyl 1 1111 il

(a) user—item matrix (b) user latent space

Figure 1: An example illustrates MF’s limitation.
From data matrix (a), us is most similar to u;, fol-
lowed by u3, and lastly u:. However in the latent
space (b), placing p, closest to p; makes p, closer to
p, than p,;, incurring a large ranking loss.

X He et al, Neural collaborative filtering, WWW 2017

Training

(a0
Score (Vu; Log loss \ Yui) Target
/z\
/ { NeuMF Layer] \
Conca‘tm
| MLPLayerX |
‘ GMF Layer ‘ * RelU
*
lement-wisé | S I:’ayeRreZLU |
Product | MLP Layer 1

o

Concatenm

|
4

/

‘ MF User Vector ‘

‘ MLP User Vector I

S~

S~

‘ MF Item Vector ‘

‘ MLP Item Vector ‘

o[ofo [l o o]

User (u)

olofolofa

Item (1)

Content-based filtering

* Content-based filtering methods

e “Content” can be user/item features, review comments, knowledge graph, multi-domain
information, contextual information, etc.

* Mitigate the cold-start issues in collaborative filtering typed algorithms

* Personalized recommendation
e Location, device, age, etc.

user history and context

N

{'/7 el \ News the user | Boris Johnson Has Warned Donald Trump - L .
R have read To Stick To The Iran Nuclear Deal d millions | candidate |hundreds .
g = video : > ranking
N E e TR — COTDUS generation
s Boris Donald Iran Nucl P
Lo Johnson Trump suCear =
= C et
Politician ort United Weapon
Korea States
/\ \ / l
...... Congress \ EMP
e N Y et video
u () | :Vneav;safgglylf:r Bosrtgtzfvr:tiii:nﬂ\s/lap Attack W09|d Cause Mass Other Cand]'_date sources fea.t‘l.lres
_ < J iSi , Says Congressional Report
Figure 1: Illustration of two pieces of news connected Figure 2: Recommendation system architecture
through knowledge entities. demonstrating the “funnel” where candidate videos
are retrieved and ranked before presenting only a
H Wang et al, Deep knowledge aware network for news recommendation, WWW’18 few to the user.

Paul Convington, et al, Deep Neural Networks for YouTube Recommendations. RecSys’16

Content-based algorithms

* A content-based machine learning perspective
* Y(x) = fw(x)
 Logistic regression, factorization machine, GBDT, ...
* Feature vector is highly sparse
- x=10,0,..,1,0,0,..,1,..0,0,..] € RP, where Dis alarge number

* The interaction between features

e Cross-product transformation of raw features

* In matrix factorization: <user;, item;>
* A 3-way cross feature: ANDgender. time=Sunday, category=mekeup)

Factorization Machines (FM)

y(_w(]_'_zwzfﬁz_}_y‘ Y VZ,VJ Li Tj

1=1 g=1+1

4 \
Feature vector x Target y
xX1'1]101]0 1170(0(0]..]0.3/0.3/0.3 0 13J0[0|0 |0 5 [y"
xX?[110|0 0({1]{0]0]..]0.30.3]0.3]0 144110100 3 [y®
x¥f110|0 0{0|1]0]..]0.30.3[0.3]0 1640|1100 1 [y®
xXP0o|1]0 0]0(|1]0 0| 00505 ..]5J0(0]0 /0 4 [y®
1o 1]0 00|01 0|0][05/05..]80]0]1]0 5 |y®
x®10 |01 1170(0(0]../05 0 |0.5]0 910|000 1 [y®
x?lojo|1|..fo|l0|1|O]..[]05[0]|05[0 1211/0|0]|0 5 y®

A B C _.JTI NHSW ST .. TI NH SW ST .

. \ User Movie y limep Last Movie rated |

Rendle, Steffen. "Factorization machines.” ICDM 2010

Factorization machine (FM)

e Advantages of FM

* Parameter estimation of sparse data — independence of interaction parameters are
broken because of factorization

* Linear complexity of computation, i.e., O(kn)
* General predictor that works for any kind of feature vectors

e Formulation

j(x) := wg + i w; T + i i (Vi, vj) iz
i=1

i=1 j=i+1

* The weights w0, wi, and the dot product of vectors are the estimated parameters

* |t can be learnt by using SGD with a variety of loss functions, as it has closed-form
equation can be computed in linear time complexity

S Rendle, Factorization Machines, ICDM 2010

Extending FM to Higher-order Feature Interactions

* Leveraging the power of deep neural networks

— Feight-1 Connection
Normal Connection

— = Enbedding
" Activaticn Function

. &\L\\; addition

Inner/uter Prodoct

-,
%‘ﬁ{lnid Function
\ N

) = aTi iy SS e ™ ™~
Sy . e o ik 5 i

e - h e
® S900 o90®

.

.

5 \
___ \f“_\...\.‘“\

-

Fiald i i i Field m Field i Fiald i Field m
3 Vide & Deep

Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems.” DLRS 2016.
Guo, Huifeng, et al. "DeepFM: A factorization-machine based neural network for CTR prediction." [1JCAI 2017

—— Welight-1 Connection f
Normal Connection
P Embedding

Field i Field j “us Field m
DeepFM

Extreme deep factorization machine (xDeepFM)

Connect to output

»Compressed Interaction Network (CIN) | ‘
e Hidden units at the k-th layer: & cnep 1 1 1

Sum pooling Sum pooling Sum pooling

Hyg_y m

kK _ k,h~rk—1 0
Kps = Z ZW;‘; (Xis 0 Xj.)
i=1 j=1

m: # fields in raw data %
D: dimension of latent space
H,,: # feature maps in the k-th hidden layer

x% : input data x°
x¥: states of the k-th hidden layer D<I —
1 m
»Properties

* Compression: reduce interaction space from O (mHj_,) down to O(Hy,)

* Keep the form of vectors
e Hidden layers are matrices, rather than vectors

* Degree of feature interactions increases with the depth of layers (explicit)

Jianxun Lian et al, Combining explicit and implicit feature interactions for recommender systems, KDD 2018

Extreme deep factorization machine (xDeepFM)

* Proposed for CTR prediction

g: J(Wzneara+wgnnx§nn +w2:f?1p++b) £ Output unit
* Low-order and high-order feature e
interactions: T T T oy S
. . : | | |
* Linear: linear and quadratic R B e
. . _ | | v v
interactions (low order) tnear T J
* DNN higher order implicit interactions R e e b
(black-box, no theoretical TTTT T T T g £
understanding, noise effects) . 00-0 00-0 ~ 00:-0 3 reves
* Compressed Interaction Network (CIN)
. [0,1,0,0,...,0] [1,0]][0,1,0,0,...,0][0,1,0,1,...,0]
* Compresses embeddlngs userid ;;:i:r organization interests

* High-order explicit interactions
e Vector-wise instead of bit-wise

Jianxun Lian et al, Combining explicit and implicit feature interactions for recommender systems, KDD 2018

Recommender Systems Meet Knowledge Graph

* ltems are not isolated

LA JOCONDE
A WASHINGTON

* KG meets RSs: DA VINCI

* more accurate predictions

* generate more diverse
candidates

* Provide high-quality
explanations

paysIA sey

is a friend of

Jan 11984

https://kpi6.com/blog/interest-detection-from-social-media/knowledge-graph/

https://kpi6.com/blog/interest-detection-from-social-media/knowledge-graph/

Deep knowledge-aware network

e Features of DKN

* Multi-channel word-entity aligned
knowledge aware CNN
* Similar to RGB in images
* Alignment to eliminate heterogeneity
of word, entity, etc.
* Semantic level and knowledge level

* Knowledge graph (distillation: entity
linking, kg construction, kg
embedding)

* Translation-based embedding
methods (TransE, TransH, etc.)

e Attention mechanism to capture
diversity of user preferences

H Wang et al, Deep knowledge aware network for news recommendation, WWW 2018

Y - 1
DKN
Click probability /\ 2

Attention Network
() weight
TN\

& element-wise +
& element-wise X

User
embedding

KCNN
Max-over-time 7407 » , /
o Candidate Attention Net
....... news —— e/
CNN layer LL L L L]] embedding o
I L7 [EEF] [TITT] CI
d x n transformed W LN 1 KCNN KCNN
context embeddings y / E L
- —4 > / - |
d x n transformed y /
entity embeddings /)
d x n word : Candidate news
embeddings / / .

O M A

W W, Wy W W W, W

User’s clicked news

Sentence
N

A combination of two parts in the KCNN model — news

vectors (from entities and words) and user vectors (clicked

news items)

End-to-end example

“The best way to predict the future is to invent it.”

Alan Kay

Operationalization challenge

Algorithm

Resources

>
Time as efforts

Evaluation

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Operationalization

* End to end operationalization
e Data collection front end
* Data preparation pipeline S T S |

. Data Generation . F——— Model Training |

e Data storage (i.e., graph database, —
distributed database, etc.) S W] e [e |

« Model building pipeline S L Moce Serving 5
° HVpE'rpa rameter tuning L 'mpé‘;i’:b“ J ?:ﬁ:g?o? B ReoorErirE;E:aﬁon | Model Servers

* Cross-validation S
Figure 3: Apps recommendation pipeline overview.
Model deployment

* Scoring (real-time or in batch) by using the
model

* Frond end web/app service
DevOps

* Model versioning, testing, maintaining, etc.

https://arxiv.org/pdf/1606.07792.pdf

https://arxiv.org/pdf/1606.07792.pdf

Operationalize a real-time

e Caching recommendations

« Recommendation results are put into
database for serving

e Recommendations from a CF model
can be served in a batch mode

* Globally distributed database with
high-throughput support is needed

Global active-active apps

Highly responsive apps

Highly available apps

Continuity during regional outrages
Scale read and write globally
Consistency flexibility

https://docs.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally

recommender

Internet

Traffic Manager

"L
(&
1
1
1
v
....................
1
1
.
A Applicat North Applicat
West US 2 Gateway Europe 0 Gateway
...................................
¢ ¢
- - - - - -
N) ! & .) b &
Web Tier Web Tier
1 1
1 1
v \ 4
Load Bal Load Bal
P - S O -+ A
9 9
- - L - - -
N) ! &)) =
Middle Tier Middle Tier
1 1
1 1
v v
+ +2
51- S

Azure Cosmos DB

Azure Cosmos DB

So!.ltheast Application
Asia Gateway
..................
°
> - o>
o i N
Web Tier
1
1
v
Load Bal
..................
?
> - o>
N N N
Middle Tier
1
1
v
y
+
Azure Cosmos DB

https://docs.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally

Operationalize a real-time recommender

 Serving the results

* Containerize the model serving
plpEIIﬂE Master Node

* Docker container -
* Modularization p—
* Kubernetes is used for scalability kubectl

benefits

* K8S manages networking across
containers

e Cluster can be sized properly

Kubernetes

K8s API

Worker Node Worker Node

. . . L. Container App A Container App B
according to the traffic characteristics
Container Container Container Container

https://docs.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally

https://docs.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally

Operationalize a real-time recommender

* The whole end-to-end architecture

e
L7

User / Item Ratings

l Data Prep / Modeling Live Serving
®
, + e Jp
— — . (D — []
o il il _ —
Azure Storage Azure Databricks Azure Cosmos DB Model running in User Clients
Azure Kubernetes

I Service

Azure Machine
Learning Services

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation

Operationalize a real-time recommender

* Performance measurement

A simulated load-test with 200 concurrent users

» K8S cluster design consideration
e Optimize throughput of database query
* Sizing of computing nodes in Kubernetes cluster
 Example

e Kubernetes cluster with 12 CPU cores, 42 GB memory, and 11000 “request units” for Azure Cosmos DB
* Median latency of 60ms at a throughput of 180 requests per second

Performance Throughput
0.36 240 240 240

160 / 160

0.24 Time: 00:05:00 160 g 0
Q Avg. Response Time: 0.061 S g S
E Avg. Page Time: 0.061 5 g 5
User Load: 200.000 2 =
0.12 80 80 80
0 0 0 0
00:00:50 00:01:40 00:02:30 00:03:20 00:04:10 00:05:00 00:00:50 00:01:40 00:02:30 00:03:20 00:04:10 00:05:00
® Avg. Response Time - Avg. Page Time - User Load Pages/Sec ® Requests/Sec < User Load

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation

Summary

* The ultimate goal of a recommender system is to predict user preferences
instead of to optimize root mean squared error

* Building a recommender system for industry-grade applications requires in-
depth understanding of data preparation, evaluation, recommending
algorithm, and model operationalization

* A deployed recommender system should always be up-to-date along with the
change of data (characteristics), business scenarios, operationalization pipeline,
etc.

* Recommender system is built by using a blend of many technologies, e.g., deep
learning, parallel computing, distributed database, etc.

Q&A

