

"Taking recommendation to the masses" with Microsoft/Recommenders

Le Zhang Data Scientist, Microsoft

Acknowledgement:

Andreas Argyriou, Dan Ciborowski, Markus Cosowicz, Miguel Gonzalez-Fierro, Scott Graham, Nikhil Joglekar, Max Kaznady, Jianxun Lian, Micro Milletari, Jun Ki Min, Jeremy Reynolds, Xing Xie, and Tao Wu

Objective

- "Taking recommendation technology to the masses"
 - Helping researchers and developers to quickly select, prototype, demonstrate, and productionize a recommender system
 - Accelerating enterprise-grade development and deployment of a recommender system into production
- Key takeaways of the talk
 - Systematic overview of the recommendation technology from a pragmatic perspective
 - Best practices (with example codes) in developing recommender systems
 - State-of-the-art academic research in recommendation algorithms

Outline

- Recommendation system in modern business (10min)
- Recommendation algorithms and implementations (20min)
- End to end example of building a scalable recommender (10min)
- Q & A (5min)

Recommendation system in modern business

"35% of what consumers purchase on Amazon and 75% of what they watch on Netflix come from recommendations algorithms"

McKinsey & Co

Recommendation everywhere

Recommendation everywhere

Brand/news/product recommendation

\$ 0

Indirectly drive revenue by increasing customer engagement, networking effect, etc.

Business metric prediction

Directly drive revenue through ad clicks, internet traffics, etc.

Customer segmentation and personalization

 $|\mathcal{A}|$

Indirectly drive revenue by precisely reaching customers with market campaign or product.

Challenges

Limited resource	Fragmented solutions	Fast-growing area
There is <i>limited</i> reference and guidance to build a recommender system on scale to support enterprise-grade scenarios	Packages/tools/modules off- the-shelf are very fragmented, not scalable, and not well compatible with each other	New algorithms sprout every day – not many people have such expertise to implement and deploy a recommender by using the state-of-the-arts algorithms

Microsoft/Recommenders

- Microsoft/Recommenders
 - Collaborative development efforts of Microsoft Cloud & AI data scientists, Microsoft Research researchers, academia researchers, etc.
 - Github url: https://github.com/Microsoft/Recommenders
 - Contents
 - Utilities: modular functions for model creation, data manipulation, evaluation, etc.
 - Algorithms: SVD, SAR, ALS, NCF, Wide&Deep, xDeepFM, DKN, etc.
 - Notebooks: HOW-TO examples for end to end recommender building.
 - Highlights
 - 3700+ stars on GitHub
 - Featured in YC Hacker News, O'Reily Data Newsletter, GitHub weekly trending list, etc.
 - Any contribution to the repo will be highly appreciated!
 - Create issue/PR directly in the GitHub repo
 - Send email to <u>RecoDevTeam@service.microsoft.com</u> for any collaboration

Recommendation algorithms and implementations

"Share our similarities, celebrate our differences"

M. Scott Peck

Recommendation models

- Various recommendation scenarios
 - Collaborative filtering, context-aware models, knowledge-aware model,...
- Integrating both Microsoft invented/contributed and excellent third-party tools
 - SAR, xDeepFM, DKN, Vowpal Wabbit (VW), LightGBM,...
 - Wide&Deep, ALS, NCF, FastAI, Surprise, ...
- No best model, but most suitable model

Collaborative Filtering

- User feedback from multiple users in a collaborative way to predict missing feedback
- Intuition: users who give similar ratings to the same items will have similar preferences → should produce similar recommendations to them
- E.g. users A and B like western movies but hate action films, users C and D like comedies but hate dramas

Figure 1. The user-oriented neighborhood method. Joe likes the three movies on the left. To make a prediction for him, the system finds similar users who also liked those movies, and then determines which other movies they liked. In this case, all three liked *Saving Private Ryan*, so that is the first recommendation. Two of them liked *Dune*, so that is next, and so on.

Collaborative filtering (cont'd)

- Memory based method
 - Microsoft Smart Adaptive Recommendation (SAR) algorithm
- Model based methods
 - Matrix factorization methods
 - Singular Value Decomposition (SVD)
 - Spark ALS implementation
 - Neural network-based methods
 - Restricted Boltzmann Machine (RBM)
 - Neural Collaborative Filtering (NCF)

Collaborative Filtering

- Neighborhood-based methods Memory-based
 - The neighborhood-based algorithm calculates the similarity between two users or items and produces a prediction for the user by taking the weighted average of all the ratings.
 - Two typical similarity measures:

Pearson correlation similarity:

Cosine similarity:

$$s(x,y) = \frac{\sum_{\{i \in I_{xy}\}} (r_{x,i} - \bar{r}_x) (r_{y,i} - \bar{r}_y)}{\sqrt[2]{\sum_{\{i \in I_{xy}\}} (r_{x,i} - \bar{r}_x)^2} \sqrt[2]{\sum_{\{i \in I_{xy}\}} (r_{y,i} - \bar{r}_y)^2}}$$

• Two paradigms:

UserCF:

$$\hat{y}_{ui} = \sum_{v \in S(u,K) \cap I(i)} s(u,v) y_{vi}$$

$$s(x,y) = \frac{\sum_{\{i \in I_{xy}\}} r_{x,i} r_{y,i}}{\sqrt[2]{\sum_{\{i \in I_{xy}\}} r_{x,i}^2} \sqrt{\sum_{\{i \in I_{xy}\}} r_{y,i}^2}}}$$

ItemCF:

$$\hat{y}_{ui} = \sum_{j \in S(i,K) \cap I(u)} s(j,i) y_{uj}$$

Smart Adaptive Recommendation (SAR)

• An item-oriented memory-based algorithm from Microsoft

https://github.com/Microsoft/Recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR (cont'd)

- SAR algorithm (the CF part)
 - It deals with implicit feedback
 - Item-to-item similarity matrix
 - Co-occurrence
 - Lift similarity
 - Jaccard similarity
 - User-to-item affinity matrix
 - Count of co-occurrence of user-item interactions
 - Weighted by interaction type and time decay

•
$$a_{i,j} = \sum_{1}^{k} w_k (\frac{1}{2})^{\frac{t_0 - t_k}{T}}$$

- Recommendation
 - Product of affinity matrix and item similarity matrix
 - Rank of product matrix gives top-n recommendations

https://github.com/Microsoft/Product-Recommendations/blob/master/doc/sar.md https://github.com/Microsoft/Recommenders/blob/master/notebooks/02_model/sar_de ep_dive.ipynb

User ID	Item ID	Time	Event
User 1	Item 1	2015/06/20T10:00:00	Click
User 1	Item 1	2015/06/28T11:00:00	Click
User 1	Item 2	2015/08/28T11:01:00	Click
User 1	Item 2	2015/08/28T12:00:01	Purchase

Original feedback data

	Item 1	Item 2	Item 3	Item 4	Item 5
User 1	5.00	3.00	2.50		
User 2	2.00	2.50	5.00	2.00	
User 3	2.50			4.00	4.50
User 4	5.00		3.00	4.50	
User 5	4.00	3.00	2.00	4.00	3.50
User 6					2.00
User 7		1.00			

	Item 1	Item 2	Item 3	Item 4	Item 5
Item 1	5	3	4	3	2
Item 2	3	4	3	2	1
Item 3	4	3	4	3	1
Item 4	3	2	3	4	2
Item 5	2	1	1	2	3

Item similarity matrix

User affinity matrix

User 1 recommendation score of item 4 rec(User 1, Item 4) = sim(Item 4, Item 1) * aff(User 1, Item 1) + sim(Item 4, Item 2) * aff(User 1, Item 2) + sim(Item 4, Item 3) * aff(User 1, Item 3) + sim(Item 4, Item 4) * aff(User 1, Item 4) + sim(Item 4, Item 5) * aff(User 1, Item 5) = 3 * 5 + 2 * 3 + 3 * 2.5 + 4 * 0 + 2 * 0 = 15 + 6 + 7.5 + 0 + 0 = 28.5

SAR Properties

- Advantages
 - Free from machine learning
 - Free from feature collection
 - Explainable results
- Disadvantages
 - Sparsity of affinity matrix
 - User-item interaction is usually sparse
 - Scalability of matrix multiplication
 - User-item matrix size grows with number of users and items
 - Matrix multiplication can be a challenge

• Import packages

```
In [1]: # set the environment path to find Recommenders
        import sys
        sys.path.append("../../")
        import itertools
        import logging
        import os
        import numpy as np
        import pandas as pd
        import papermill as pm
        from reco utils.dataset import movielens
        from reco_utils.dataset.python_splitters import python stratified split
        from reco utils.evaluation.python evaluation import map at k, ndcg at k, precision at k, recall at k
        from reco utils.recommender.sar.sar_singlenode import SARSingleNode
        print("System version: {}".format(sys.version))
        print("Pandas version: {}".format(pd. version ))
        System version: 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34)
        [GCC 7.3.0]
        Pandas version: 0.24.2
```

Source code: <u>https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb</u>

• Prepare dataset

In [3]:	<pre>data = movielens.load_pandas_df(size=MOVIELENS_DATA_SIZE, header=['UserId', 'MovieId', 'Rating', 'Timestamp'], title_col='Title')</pre>				_			
	<i>"</i> # Convert the float precision to 32-bit in order to reduce memory consumption	Out[3]:		Userld	Movield	Rating	Timestamp	Title
	<pre>data.loc[:, 'Rating'] = data['Rating'].astype(np.float32)</pre>		0	196	242	3.0	881250949	Kolya (1996)
	data.head()		1	63	242	3.0	875747190	Kolya (1996)
	4.93MB [00:02, 2.36MB/s]		2	226	242	5.0	883888671	Kolya (1996)
			3	154	242	3.0	879138235	Kolya (1996)
			4	306	242	5.0	876503793	Kolya (1996)

In [5]: train, test = python_stratified_split(data, ratio=0.75, col_user=header["col_user"], col_item=header["col_ item"], seed=42)

Source code: https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

• Fit a SAR model

In [7]: model.fit(train)

2019-05-28 22:40:09,133	INFO	Collecting user affinity matrix
2019-05-28 22:40:09,137	INFO	Calculating time-decayed affinities
2019-05-28 22:40:09,178	INFO	Creating index columns
2019-05-28 22:40:09,188	INFO	Building user affinity sparse matrix
2019-05-28 22:40:09,194	INFO	Calculating item co-occurrence
2019-05-28 22:40:09,412	INFO	Calculating item similarity
2019-05-28 22:40:09,413	INFO	Using jaccard based similarity
2019-05-28 22:40:09,534	INFO	Done training

Source code: <u>https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb</u>

• Get the top k recommendations

In [8]: top_k = model.recommend_k_items(test, remove_seen=True)

```
In [10]: # all ranking metrics have the same arguments
         args = [test, top k]
         kwargs = dict(col user='UserId',
                       col item='MovieId',
                       col rating='Rating',
                       col prediction='Prediction',
                       relevancy method='top k',
                        k=TOP K)
         eval map = map at k(*args, **kwargs)
         eval_ndcg = ndcg_at_k(*args, **kwargs)
         eval precision = precision at k(*args, **kwargs)
         eval recall = recall at k(*args, **kwargs)
In [11]: print(f"Model:",
               f"Top K:\t\t {TOP K}",
               f"MAP:\t\t {eval map:f}",
               f"NDCG:\t\t {eval ndcg:f}",
               f"Precision@K:\t {eval precision:f}",
               f"Recall@K:\t {eval recall:f}", sep='\n')
         Model:
         TOD K:
                          10
         MAP:
                          0.095544
         NDCG:
                          0.350232
         Precision@K:
                          0.305726
         Recall@K:
                          0.164690
```

Source code: <u>https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb</u>

Matrix factorization

- The simplest way to model latent factors is as *user & item vectors* that multiply (as inner products)
- Learn these factors from the data and use as model, and predict an unseen rating of user-item by multiplying user factor with item factor
 - The matrix factors *U*, *V* have *f* columns, rows resp.
 - The number of factors *f* is also called the *rank* of the model

Stochastic Gradient Descent (SGD) Parameters are updated in the opposite direction of gradient:

> $q_i \leftarrow q_i + \gamma \cdot (e_{ui} \cdot p_u - \lambda \cdot q_i)$ $p_u \leftarrow p_u + \gamma \cdot (e_{ui} \cdot q_i - \lambda \cdot p_u)$

Neural collaborative filtering (NCF)

- Neural collaborative filtering
 - Neural network-based architecture to model latent features
 - Generalization of MF based method
 - Multi-Layer Perceptron (MLP) can be incorporated for dealing with non-linearities

Figure 1: An example illustrates MF's limitation. From data matrix (a), u_4 is most similar to u_1 , followed by u_3 , and lastly u_2 . However in the latent space (b), placing p_4 closest to p_1 makes p_4 closer to p_2 than p_3 , incurring a large ranking loss.

Content-based filtering

- Content-based filtering methods
 - "Content" can be user/item features, review comments, knowledge graph, multi-domain information, contextual information, etc.
 - Mitigate the cold-start issues in collaborative filtering typed algorithms
 - Personalized recommendation
 - Location, device, age, etc.

Figure 1: Illustration of two pieces of news connected through knowledge entities.

H Wang et al, Deep knowledge aware network for news recommendation, WWW'18 Paul Convington, et al, Deep Neural Networks for YouTube Recommendations. RecSys'16

Figure 2: Recommendation system architecture demonstrating the "funnel" where candidate videos are retrieved and ranked before presenting only a few to the user.

Content-based algorithms

- A content-based machine learning perspective
 - $\hat{y}(\boldsymbol{x}) = f_{\boldsymbol{w}}(\boldsymbol{x})$
 - Logistic regression, factorization machine, GBDT, ...
- Feature vector is highly sparse
 - $x = [0,0, ..., 1,0,0, ..., 1, ..., 0,0, ...] \in \mathbb{R}^{D}$, where D is a large number
- The interaction between features
 - Cross-product transformation of raw features
 - In matrix factorization: <*user_i*, *item_j*>
 - A 3-way cross feature: AND(gender=f, time=Sunday, category=makeup)

Factorization Machines (FM)

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

Feature vector x															ſ	Tarç	get y						
X ⁽¹⁾	1	0	0		1	0	0	0		0.3	0.3	0.3	0		13	0	0	0	0]		5	y ⁽¹⁾
X ⁽²⁾	1	0	0		0	1	0	0		0.3	0.3	0.3	0		14	1	0	0	0			3] y ⁽²⁾
X ⁽³⁾	1	0	0		0	0	1	0		0.3	0.3	0.3	0		16	0	1	0	0			1	y ⁽²⁾
X ⁽⁴⁾	0	1	0		0	0	1	0		0	0	0.5	0.5		5	0	0	0	0			4	y ⁽³⁾
X ⁽⁵⁾	0	1	0		0	0	0	1		0	0	0.5	0.5		8	0	0	1	0			5	y ⁽⁴⁾
X ⁽⁶⁾	0	0	1		1	0	0	0		0.5	0	0.5	0		9	0	0	0	0			1	y ⁽⁵⁾
X ⁽⁷⁾	0	0	1		0	0	1	0		0.5	0	0.5	0		12	1	0	0	0			5	y ⁽⁶⁾
	A	B Us	C er		ТІ	NH	SW Movie	ST ;		TI Otl	NH her M	SW lovie	ST s rate	ed	Time			SW Vovie	ST e rate	 ed			_

Rendle, Steffen. "Factorization machines." ICDM 2010

Factorization machine (FM)

- Advantages of FM
 - Parameter estimation of sparse data independence of interaction parameters are broken because of factorization
 - Linear complexity of computation, i.e., O(kn)
 - General predictor that works for any kind of feature vectors
- Formulation

$$\hat{y}(\mathbf{x}) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \langle \mathbf{v}_i, \mathbf{v}_j \rangle x_i x_j$$

- The weights w0, wi, and the dot product of vectors are the estimated parameters
- It can be learnt by using SGD with a variety of loss functions, as it has closed-form equation can be computed in linear time complexity

Extending FM to Higher-order Feature Interactions

• Leveraging the power of deep neural networks

Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems." DLRS 2016. Guo, Huifeng, et al. "DeepFM: A factorization-machine based neural network for CTR prediction." IJCAI 2017

Extreme deep factorization machine (xDeepFM)

<u>Compressed Interaction Network (CIN)</u>

• Hidden units at the k-th layer:

$$\mathbf{X}_{h,*}^{k} = \sum_{i=1}^{H_{k-1}} \sum_{j=1}^{m} \mathbf{W}_{ij}^{k,h} (\mathbf{X}_{i,*}^{k-1} \circ \mathbf{X}_{j,*}^{0})$$

m: # fields in raw data

- D: dimension of latent space
- H_k : # feature maps in the k-th hidden layer
- x^0 : input data
- x^k : states of the k-th hidden layer

➢ Properties

- Compression: reduce interaction space from $O(mH_{k-1})$ down to $O(H_k)$
- Keep the form of vectors
 - Hidden layers are matrices, rather than vectors
- Degree of feature interactions increases with the depth of layers (explicit)

Extreme deep factorization machine (xDeepFM)

• Proposed for CTR prediction

 $\hat{y} = \sigma(\mathbf{w}_{linear}^T \mathbf{a} + \mathbf{w}_{dnn}^T \mathbf{x}_{dnn}^k + \mathbf{w}_{cin}^T \mathbf{p}^+ + b)$

- Low-order and high-order feature interactions:
 - Linear: linear and quadratic interactions (low order)
 - DNN higher order implicit interactions (black-box, no theoretical understanding, noise effects)
 - Compressed Interaction Network (CIN)
 - Compresses embeddings
 - High-order explicit interactions
 - Vector-wise instead of bit-wise

Recommender Systems Meet Knowledge Graph

- Items are not isolated
- KG meets RSs:
 - more accurate predictions
 - generate more diverse candidates
 - Provide high-quality explanations

https://kpi6.com/blog/interest-detection-from-social-media/knowledge-graph/

Deep knowledge-aware network

- Features of DKN
 - Multi-channel word-entity aligned knowledge aware CNN
 - Similar to RGB in images
 - Alignment to eliminate heterogeneity of word, entity, etc.
 - Semantic level and knowledge level
 - Knowledge graph (distillation: entity linking, kg construction, kg embedding)
 - Translation-based embedding methods (TransE, TransH, etc.)
 - Attention mechanism to capture diversity of user preferences

A combination of two parts in the KCNN model – news vectors (from entities and words) and user vectors (clicked news items)

End-to-end example

"The best way to predict the future is to invent it."

Alan Kay

Operationalization challenge

Operationalization

- End to end operationalization
 - Data collection front end
 - Data preparation pipeline
 - Data storage (i.e., graph database, distributed database, etc.)
 - Model building pipeline
 - Hyperparameter tuning
 - Cross-validation
 - Model deployment
 - Scoring (real-time or in batch) by using the model
 - Frond end web/app service
 - DevOps
 - Model versioning, testing, maintaining, etc.

Figure 3: Apps recommendation pipeline overview.

- Caching recommendations
 - Recommendation results are put into database for serving
 - Recommendations from a CF model can be served in a batch mode
 - Globally distributed database with high-throughput support is needed
 - Global active-active apps
 - Highly responsive apps
 - Highly available apps
 - Continuity during regional outrages
 - Scale read and write globally
 - Consistency flexibility

- Serving the results
 - Containerize the model serving pipeline
 - Docker container
 - Modularization
 - Kubernetes is used for scalability benefits
 - K8S manages networking across containers
 - Cluster can be sized properly according to the traffic characteristics

• The whole end-to-end architecture

- Performance measurement
 - A simulated load-test with 200 concurrent users
 - K8S cluster design consideration
 - Optimize throughput of database query
 - Sizing of computing nodes in Kubernetes cluster
 - Example
 - Kubernetes cluster with 12 CPU cores, 42 GB memory, and 11000 "request units" for Azure Cosmos DB
 - Median latency of 60ms at a throughput of 180 requests per second

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation

Summary

- The ultimate goal of a recommender system is to predict user preferences instead of to optimize root mean squared error
- Building a recommender system for industry-grade applications requires indepth understanding of data preparation, evaluation, recommending algorithm, and model operationalization
- A deployed recommender system should always be up-to-date along with the change of data (characteristics), business scenarios, operationalization pipeline, etc.
- Recommender system is built by using a blend of many technologies, e.g., deep learning, parallel computing, distributed database, etc.

Q & A