

Objective

• “Taking recommendation technology to the masses”
• Helping researchers and developers to quickly select, prototype, demonstrate, and

productionize a recommender system

• Accelerating enterprise-grade development and deployment of a recommender system
into production

• Key takeaways of the talk
• Systematic overview of the recommendation technology from a pragmatic perspective

• Best practices (with example codes) in developing recommender systems

• State-of-the-art academic research in recommendation algorithms

Outline

• Recommendation system in modern business (10min)

• Recommendation algorithms and implementations (20min)

• End to end example of building a scalable recommender (10min)

• Q & A (5min)

Recommendation system in
modern business
“35% of what consumers purchase on Amazon and 75% of what they watch on
Netflix come from recommendations algorithms”

McKinsey & Co

Challenges

There is limited reference
and guidance to build a
recommender system on
scale to support
enterprise-grade
scenarios

Packages/tools/modules off-
the-shelf are very
fragmented, not scalable,
and not well compatible with
each other

New algorithms sprout
every day – not many
people have such
expertise to implement
and deploy a
recommender by using
the state-of-the-arts
algorithms

Fast-growing areaFragmented solutionsLimited resource

Microsoft/Recommenders

• Microsoft/Recommenders
• Collaborative development efforts of Microsoft Cloud & AI data scientists, Microsoft

Research researchers, academia researchers, etc.

• Github url: https://github.com/Microsoft/Recommenders

• Contents
• Utilities: modular functions for model creation, data manipulation, evaluation, etc.

• Algorithms: SVD, SAR, ALS, NCF, Wide&Deep, xDeepFM, DKN, etc.

• Notebooks: HOW-TO examples for end to end recommender building.

• Highlights
• 3700+ stars on GitHub

• Featured in YC Hacker News, O’Reily Data Newsletter, GitHub weekly trending list, etc.

• Any contribution to the repo will be highly appreciated!
• Create issue/PR directly in the GitHub repo

• Send email to RecoDevTeam@service.microsoft.com for any collaboration

https://github.com/Microsoft/Recommenders
mailto:RecoDevTeam@service.microsoft.com

Recommendation algorithms and
implementations
“Share our similarities, celebrate our differences”

M. Scott Peck

Recommendation models

• Various recommendation scenarios
• Collaborative filtering, context-aware models, knowledge-aware model,…

• Integrating both Microsoft invented/contributed and excellent third-party
tools
• SAR, xDeepFM, DKN, Vowpal Wabbit (VW), LightGBM,…

• Wide&Deep, ALS, NCF, FastAI, Surprise, …

• No best model, but most suitable model

Collaborative Filtering

• User feedback from multiple users in a
collaborative way to predict missing
feedback

• Intuition: users who give similar ratings
to the same items will have similar
preferences → should produce similar
recommendations to them

• E.g. users A and B like western movies
but hate action films, users C and D like
comedies but hate dramas

Y Koren et al, Matrix factorization techniques for recommendation systems, IEEE Computer 2009

Collaborative filtering (cont'd)

• Memory based method
• Microsoft Smart Adaptive Recommendation (SAR) algorithm

• Model based methods
• Matrix factorization methods

• Singular Value Decomposition (SVD)

• Spark ALS implementation

• Neural network-based methods
• Restricted Boltzmann Machine (RBM)

• Neural Collaborative Filtering (NCF)

Collaborative Filtering

• Neighborhood-based methods - Memory-based
• The neighborhood-based algorithm calculates the similarity between two users or

items and produces a prediction for the user by taking the weighted average of all
the ratings.

• Two typical similarity measures:

• Two paradigms:

Pearson correlation similarity: Cosine similarity:

𝑠 𝑥, 𝑦 =
σ

𝑖∈𝐼𝑥𝑦
(𝑟𝑥,𝑖− ҧ𝑟𝑥)(𝑟𝑦,𝑖− ҧ𝑟𝑦)

2
σ

𝑖∈𝐼𝑥𝑦
𝑟𝑥,𝑖− ҧ𝑟𝑥

22
σ

𝑖∈𝐼𝑥𝑦
𝑟𝑦,𝑖− ҧ𝑟𝑦

2
𝑠 𝑥, 𝑦 =

σ
𝑖∈𝐼𝑥𝑦

𝑟𝑥,𝑖 𝑟𝑦,𝑖

2 σ
𝑖∈𝐼𝑥𝑦

𝑟𝑥,𝑖
2 σ

𝑖∈𝐼𝑥𝑦
𝑟𝑦,𝑖
2

ො𝑦𝑢𝑖 = ෍

𝑣∈𝑆 𝑢,𝐾 ∩𝐼(𝑖)

𝑠 𝑢, 𝑣 𝑦𝑣𝑖 ො𝑦𝑢𝑖 = ෍

𝑗∈𝑆 𝑖,𝐾 ∩𝐼(𝑢)

𝑠 𝑗, 𝑖 𝑦𝑢𝑗

UserCF: ItemCF:

Smart Adaptive Recommendation (SAR)

• An item-oriented memory-based algorithm from Microsoft

https://github.com/Microsoft/Recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

https://github.com/Microsoft/Recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR (cont’d)

• SAR algorithm (the CF part)
• It deals with implicit feedback

• Item-to-item similarity matrix

• Co-occurrence

• Lift similarity

• Jaccard similarity

• User-to-item affinity matrix

• Count of co-occurrence of user-item interactions

• Weighted by interaction type and time decay

• 𝑎𝑖,𝑗 = σ1
𝑘𝑤𝑘(

1

2
)
𝑡0−𝑡𝑘

𝑇

• Recommendation

• Product of affinity matrix and item similarity matrix

• Rank of product matrix gives top-n
recommendations

User 1 recommendation score of item 4
rec(User 1, Item 4)
= sim(Item 4, Item 1) * aff(User 1, Item 1)
+ sim(Item 4, Item 2) * aff(User 1, Item 2)
+ sim(Item 4, Item 3) * aff(User 1, Item 3)
+ sim(Item 4, Item 4) * aff(User 1, Item 4)
+ sim(Item 4, Item 5) * aff(User 1, Item 5)
= 3 * 5 + 2 * 3 + 3 * 2.5 + 4 * 0 + 2 * 0
= 15 + 6 + 7.5 + 0 + 0 = 28.5

https://github.com/Microsoft/Product-Recommendations/blob/master/doc/sar.md
https://github.com/Microsoft/Recommenders/blob/master/notebooks/02_model/sar_de
ep_dive.ipynb

Original feedback data

User affinity matrix
Item similarity matrix

https://github.com/Microsoft/Product-Recommendations/blob/master/doc/sar.md
https://github.com/Microsoft/Recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR Properties

• Advantages
• Free from machine learning

• Free from feature collection

• Explainable results

• Disadvantages
• Sparsity of affinity matrix

• User-item interaction is usually sparse

• Scalability of matrix multiplication
• User-item matrix size grows with number of users and items

• Matrix multiplication can be a challenge

SAR practice with Microsoft/Recommenders

• Import packages

Source code: https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR practice with Microsoft/Recommenders

• Prepare dataset

Source code: https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR practice with Microsoft/Recommenders

• Fit a SAR model

Source code: https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

SAR practice with Microsoft/Recommenders

• Get the top k recommendations

Source code: https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

https://github.com/microsoft/recommenders/blob/master/notebooks/02_model/sar_deep_dive.ipynb

Matrix factorization

• The simplest way to model latent factors is as user & item vectors that multiply
(as inner products)

• Learn these factors from the data and use as model, and predict an unseen
rating of user-item by multiplying user factor with item factor
• The matrix factors U, V have f columns, rows resp.

• The number of factors f is also called the rank of the model

𝑞𝑖
𝑝𝑢

𝑖

𝑢

https://www.datacamp.com/community/tutorials/matrix-factorization-names

Stochastic Gradient Descent (SGD)
Parameters are updated in the opposite

direction of gradient:

Neural collaborative filtering (NCF)

• Neural collaborative filtering
• Neural network-based architecture to model latent features

• Generalization of MF based method

• Multi-Layer Perceptron (MLP) can be incorporated for dealing with non-linearities

X He et al, Neural collaborative filtering, WWW 2017

Content-based filtering

• Content-based filtering methods
• “Content” can be user/item features, review comments, knowledge graph, multi-domain

information, contextual information, etc.

• Mitigate the cold-start issues in collaborative filtering typed algorithms

• Personalized recommendation
• Location, device, age, etc.

H Wang et al, Deep knowledge aware network for news recommendation, WWW’18
Paul Convington, et al, Deep Neural Networks for YouTube Recommendations. RecSys’16

Content-based algorithms

• A content-based machine learning perspective
• ො𝑦 𝒙 = 𝑓𝒘(𝒙)

• Logistic regression, factorization machine, GBDT, …

• Feature vector is highly sparse
• 𝒙 = 0,0, … , 1,0,0, … , 1,… 0,0,… ∈ 𝑅𝐷, where D is a large number

• The interaction between features
• Cross-product transformation of raw features

• In matrix factorization: <𝑢𝑠𝑒𝑟𝑖 , 𝑖𝑡𝑒𝑚𝑗>

• A 3-way cross feature: AND(gender=f, time=Sunday, category=makeup)

Factorization Machines (FM)

Rendle, Steffen. "Factorization machines.“ ICDM 2010

Factorization machine (FM)

• Advantages of FM
• Parameter estimation of sparse data – independence of interaction parameters are

broken because of factorization

• Linear complexity of computation, i.e., O(kn)

• General predictor that works for any kind of feature vectors

• Formulation

• The weights w0, wi, and the dot product of vectors are the estimated parameters

• It can be learnt by using SGD with a variety of loss functions, as it has closed-form
equation can be computed in linear time complexity

S Rendle, Factorization Machines, ICDM 2010

Extending FM to Higher-order Feature Interactions

DeepFM

• Leveraging the power of deep neural networks

Cheng, Heng-Tze, et al. "Wide & deep learning for recommender systems.“ DLRS 2016.
Guo, Huifeng, et al. "DeepFM: A factorization-machine based neural network for CTR prediction." IJCAI 2017

➢Compressed Interaction Network (CIN)
• Hidden units at the k-th layer:

➢Properties
• Compression: reduce interaction space from 𝑂(𝑚𝐻𝑘−1) down to 𝑂(𝐻𝑘)
• Keep the form of vectors

• Hidden layers are matrices, rather than vectors

• Degree of feature interactions increases with the depth of layers (explicit)

Extreme deep factorization machine (xDeepFM)

Jianxun Lian et al, Combining explicit and implicit feature interactions for recommender systems, KDD 2018

m: # fields in raw data
D: dimension of latent space
𝐻𝑘: # feature maps in the k-th hidden layer
𝑥0 : input data
𝑥𝑘: states of the k-th hidden layer

Extreme deep factorization machine (xDeepFM)

• Proposed for CTR prediction

• Low-order and high-order feature
interactions:

• Linear: linear and quadratic
interactions (low order)

• DNN higher order implicit interactions
(black-box, no theoretical
understanding, noise effects)

• Compressed Interaction Network (CIN)
• Compresses embeddings

• High-order explicit interactions

• Vector-wise instead of bit-wise

Jianxun Lian et al, Combining explicit and implicit feature interactions for recommender systems, KDD 2018

Recommender Systems Meet Knowledge Graph

• Items are not isolated

• KG meets RSs:
• more accurate predictions

• generate more diverse
candidates

• Provide high-quality
explanations

https://kpi6.com/blog/interest-detection-from-social-media/knowledge-graph/

https://kpi6.com/blog/interest-detection-from-social-media/knowledge-graph/

Deep knowledge-aware network

• Features of DKN
• Multi-channel word-entity aligned

knowledge aware CNN
• Similar to RGB in images

• Alignment to eliminate heterogeneity
of word, entity, etc.

• Semantic level and knowledge level
• Knowledge graph (distillation: entity

linking, kg construction, kg
embedding)

• Translation-based embedding
methods (TransE, TransH, etc.)

• Attention mechanism to capture
diversity of user preferences

H Wang et al, Deep knowledge aware network for news recommendation, WWW 2018

A combination of two parts in the KCNN model – news
vectors (from entities and words) and user vectors (clicked
news items)

End-to-end example
“The best way to predict the future is to invent it.”

Alan Kay

Operationalization challenge

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Operationalization

• End to end operationalization
• Data collection front end

• Data preparation pipeline

• Data storage (i.e., graph database,
distributed database, etc.)

• Model building pipeline
• Hyperparameter tuning

• Cross-validation

• Model deployment
• Scoring (real-time or in batch) by using the

model

• Frond end web/app service

• DevOps
• Model versioning, testing, maintaining, etc.

https://arxiv.org/pdf/1606.07792.pdf

https://arxiv.org/pdf/1606.07792.pdf

Operationalize a real-time recommender

• Caching recommendations
• Recommendation results are put into

database for serving

• Recommendations from a CF model
can be served in a batch mode

• Globally distributed database with
high-throughput support is needed
• Global active-active apps

• Highly responsive apps

• Highly available apps

• Continuity during regional outrages

• Scale read and write globally

• Consistency flexibility

https://docs.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally

https://docs.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally

Operationalize a real-time recommender

• Serving the results
• Containerize the model serving

pipeline
• Docker container

• Modularization

• Kubernetes is used for scalability
benefits
• K8S manages networking across

containers

• Cluster can be sized properly
according to the traffic characteristics

https://docs.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally

https://docs.microsoft.com/en-us/azure/cosmos-db/distribute-data-globally

Operationalize a real-time recommender

• The whole end-to-end architecture

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation

Operationalize a real-time recommender

• Performance measurement
• A simulated load-test with 200 concurrent users

• K8S cluster design consideration
• Optimize throughput of database query

• Sizing of computing nodes in Kubernetes cluster

• Example

• Kubernetes cluster with 12 CPU cores, 42 GB memory, and 11000 “request units” for Azure Cosmos DB

• Median latency of 60ms at a throughput of 180 requests per second

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation

https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/ai/real-time-recommendation

Summary

• The ultimate goal of a recommender system is to predict user preferences
instead of to optimize root mean squared error

• Building a recommender system for industry-grade applications requires in-
depth understanding of data preparation, evaluation, recommending
algorithm, and model operationalization

• A deployed recommender system should always be up-to-date along with the
change of data (characteristics), business scenarios, operationalization pipeline,
etc.

• Recommender system is built by using a blend of many technologies, e.g., deep
learning, parallel computing, distributed database, etc.

Q & A

